1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
6

A moving company charges $840 plus $17 per hour. Another moving company charges $760 plus $22 per hour.how long is job that cost

s the same no matter wich company is used
Mathematics
1 answer:
adoni [48]3 years ago
5 0
1. Make an equation.
Moving company #1: y = 17x + 840
Moving company #2: y = 22x + 760

2. Put the equations together and solve
17x + 840 = 22x + 760
-17x            -17x
840 = 5x + 760
-760        -760
80 = 5x 
5       5
16 = x

When a job is 16 hours they both charge the same thing.
You might be interested in
15 is the same as the product of 3 and a number. Which equation models this sentence?
adelina 88 [10]

Question

15 is the same as the product of 3 and a number. Which equation models this sentence?

15=3x

15=x-3

15=3+x

15=x divided by 3

Answer:

<h2>15=3x</h2>

Step-by-step explanation:

15 = 3x

x = 15 : 3

x = 5

.........................

check

15 = 3 * 5

15 = 15

the answer is good


3 0
3 years ago
Read 2 more answers
4 Tan A/1-Tan^4=Tan2A + Sin2A​
Eva8 [605]

tan(2<em>A</em>) + sin(2<em>A</em>) = sin(2<em>A</em>)/cos(2<em>A</em>) + sin(2<em>A</em>)

• rewrite tan = sin/cos

… = 1/cos(2<em>A</em>) (sin(2<em>A</em>) + sin(2<em>A</em>) cos(2<em>A</em>))

• expand the functions of 2<em>A</em> using the double angle identities

… = 2/(2 cos²(<em>A</em>) - 1) (sin(<em>A</em>) cos(<em>A</em>) + sin(<em>A</em>) cos(<em>A</em>) (cos²(<em>A</em>) - sin²(<em>A</em>)))

• factor out sin(<em>A</em>) cos(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (1 + cos²(<em>A</em>) - sin²(<em>A</em>))

• simplify the last factor using the Pythagorean identity, 1 - sin²(<em>A</em>) = cos²(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (2 cos²(<em>A</em>))

• rearrange terms in the product

… = 2 sin(<em>A</em>) cos(<em>A</em>) (2 cos²(<em>A</em>))/(2 cos²(<em>A</em>) - 1)

• combine the factors of 2 in the numerator to get 4, and divide through the rightmost product by cos²(<em>A</em>)

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - 1/cos²(<em>A</em>))

• rewrite cos = 1/sec, i.e. sec = 1/cos

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - sec²(<em>A</em>))

• divide through again by cos²(<em>A</em>)

… = (4 sin(<em>A</em>)/cos(<em>A</em>)) / (2/cos²(<em>A</em>) - sec²(<em>A</em>)/cos²(<em>A</em>))

• rewrite sin/cos = tan and 1/cos = sec

… = 4 tan(<em>A</em>) / (2 sec²(<em>A</em>) - sec⁴(<em>A</em>))

• factor out sec²(<em>A</em>) in the denominator

… = 4 tan(<em>A</em>) / (sec²(<em>A</em>) (2 - sec²(<em>A</em>)))

• rewrite using the Pythagorean identity, sec²(<em>A</em>) = 1 + tan²(<em>A</em>)

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (2 - (1 + tan²(<em>A</em>))))

• simplify

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (1 - tan²(<em>A</em>)))

• condense the denominator as the difference of squares

… = 4 tan(<em>A</em>) / (1 - tan⁴(<em>A</em>))

(Note that some of these steps are optional or can be done simultaneously)

7 0
2 years ago
BRAINLIEST!!!! PLEASE HELP QUICK!!! find m BDC<br> (9x + 5)<br> (12x - 19)
Eva8 [605]

Answer:

il faut passer les x de l'autre voter comme x=9+5=14 donc x=14 je pense que c'est ça mais je suis pas sûr et tu fait pareil pour l'autre

6 0
2 years ago
Your history test is out of 30 points. How many points would you need to get if you wanted a ‘B’ or higher? (Hint: A grade of 80
Sloan [31]
To get a B, you need at least 80%.

30 x 0.8 = 24

80% of 30 is 24, so you would need to get at least 24 points <3
7 0
3 years ago
Read 2 more answers
What is the value of x in the equation 3 minus 2 x = negative 1.5 x? –6 –2 2 6
olga_2 [115]

Answer:

x=118.25

Step-by-step explanation:

3−2x=−1.5−6−226

3+−2x=−1.5+−6+−226

−2x+3=(−1.5+−6+−226)(Combine Like Terms)

−2x+3=−233.5

−2x+3=−233.5

Step 2: Subtract 3 from both sides.

−2x+3−3=−233.5−3

−2x=−236.5

Step 3: Divide both sides by -2.

−2x

−2

=

−236.5

−2

x=118.25

4 0
3 years ago
Read 2 more answers
Other questions:
  • PLEASE HELP QUICKLY!!!!!!
    8·1 answer
  • The sum of 5 consecutive integers is 505.
    7·1 answer
  • Sergi’s grandmother sent him 10.00 for his birthday. He gave 1/10 of it in church, spent 1/5 of it on a toy , and spent 3/5 of i
    13·1 answer
  • Dylan is working on a magic trick with a deck of cards. He pulled out and replaced one card 80 times
    8·1 answer
  • 9. The Brightline train travels 204 miles in 3 hours, moving at a constant
    12·1 answer
  • Michael canned 4,713 quarts of blueberries over the summer. By the end of the year he had used 1/3 of what he had canned. How ma
    15·1 answer
  • Find the slope of a line through the points (0,0) and (2, 9). Round your
    14·1 answer
  • “Hunter tutors students in mathematics to earn
    13·1 answer
  • Can someone please help me?!
    13·1 answer
  • A person is running a distance race at a constant rate. What time will they finish the race what information would you need to b
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!