22.
pythagorean theorem says legs a and b and hypotenuse c of a right triangle are related via the equation c²=a²+b². in other words, adding the sum of the squares of the legs get you the square of the hypotenuse
if the hypotenuse is 4 meters long, c = 4.
if one leg is 3 meters long, we can choose either a or b to be 3. it does not really matter. let us choose a = 3. now we have to find b.
if we have c²=a²+b², we can solve for b.
subtract a² both sides to get c²-a²=b², and then square root both sides to get
b = √(c²-a²)
plugging in our info we get
b = √(4²-3²) = √(16 -9) = √7
so the answer is √7 meters for 22
23
two triangles are similar, then the proportion of their sides are the same. the propotion between the smaller triangles' hypotenuse and 2cm leg is 5cm/3cm.
notice how the bigger triangle just have a doubled hypotenuse. therefore, the bigger triangle's x and y are just the corresponding smaller triangle values doubled.
x = 6 and y = 8
2x^2 - quadratic - monomial
-2 - constant - monomial
3x - 9 - linear - binomial
-3x^2 - 6x + 9 - quadratic - trinomial
Answer:
the angle between their paths is <em>100.8°</em>
Step-by-step explanation:
From the given information, you can construct a triangle, just like the one in the figure.
We will use the <em>Cosine Rule</em> which is:
c² = b² + a² - 2 b c cos(θ)
where
- c = 16 miles
- b = 8 miles
- a = 12 miles
Therefore,
2 b c cos(θ) = b² + a² - c²
cos(θ) = (b² + a² - c²) / 2 b c
θ = cos⁻¹( (b² + a² - c²) / (2 b c) )
θ = cos⁻¹( (8² + 12² - 16²) / 2(8)(16) )
<em>θ = 100.8°</em>
<em></em>
Therefore, the angle between their paths is <em>100.8°</em>
Hello,
"T<span>he product of 8 and a number increased by 4" may be understood by 2 ways:
1) it is the number which is increased
2) it is the product which is increased.
1) 8*(y+4) =8y+32
2) (8y)+4=8y+4
Seeing answers
:answer A: 8y+4
</span>
It is a reflection across the y axis, then a translation to the right 2 units.
I hope this helps! If you have more you want help with I can help.