T_T          T-T     XD    XP    ---------------------00000__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
        
             
        
        
        
Quadrant 4
Hope this helps!
        
             
        
        
        
1.) x = -3...this is a vertical line with an undefined slope. A parallel line to a vertical line is also a vertical line. A vertical line is represented by x = a number....that number being the x coordinate of ur point(4,2).
so ur parallel line is : x = 4 <==
=================
2.) y = -3/2x + 6....slope here is -3/2. A parallel line will have the same slope.
y = mx + b
slope(m) = -3/2
(2,-1)...x = 2 and y = -1
now we sub into the formula and find b, the y int
-1 = -3/2(2) + b
-1 = -3 + b
-1 + 3 = b
2 = b
so ur parallel line is : y = -3/2x + 2 <==
===================
y = -x - 2....the slope here is -1. A parallel line will have the same slope
y = mx + b
slope(m) = -1
(2,-2)...x = 2 and y = -2
now we sub into the formula and find b, the y int
-2 = -1(2) + b
-2 = -2 + b
-2 + 2 = b
0 = b
so ur parallel equation is : y = -x + 0 which can be written as : y = -x <=
        
             
        
        
        
<h2>
Explanation:</h2><h2>
</h2>
The diagram is missing but I'll assume that the arc BDC is:

And another arc, let's call it FGH. measures:

If those arc are equal, then this equation is true:

Substituting k into the first equation:

 
        
        
        
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Slope Formula:  
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
Point (2, 5)
Point (6, 7)
<u>Step 2: Find slope </u><em><u>m</u></em>
- Substitute in points [Slope Formula]:                                                               
- [Fraction] Subtract:                                                                                            
- [Fraction] Simplify:                                                                                            