1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jet001 [13]
3 years ago
13

Given the equation y − 3 = one half(x + 6) in point-slope form, identify the equation of the same line in standard form.

Mathematics
2 answers:
user100 [1]3 years ago
4 0
C.y=1/2x+6, is fit....
olga55 [171]3 years ago
3 0
Y - 3 = 1/2(x + 6) =...point slope form
y - 3 = 1/2x + 3
y = 1/2x + 3 + 3
y = 1/2x + 6...slope intercept form
-1/2x + y = 6...multiply everything by -2
x - 2y = -12 <=== standard form
You might be interested in
When an octave is divided into twelve equal steps, a chromatic scale results. The ratios between sucessive notes is
alukav5142 [94]

Answer: They would be A.

Step-by-step explanation: Don't take my word for it 100%

7 0
3 years ago
Consider a group of kk people. Assume that each person's birthday is drawn uniformly at random from the 365 possibilities. (And
QveST [7]

Answer:

366

Step-by-step explanation:

Since there are 365 possible slots for people to have their birthday on, the worst case happens when all 365 people have different birthday. This means the 366th person would have their birthday falls on any of other’s birthday. Hence, kk must be at least 366.

6 0
3 years ago
Any helpppppp?????? Need help asap
Artemon [7]

Answer:

3. D

4. A

5. C

6. A

hopefullt this helps!

if its incorect im sorry i tried

3 0
2 years ago
Solve the following systems of equations using the matrix method: a. 3x1 + 2x2 + 4x3 = 5 2x1 + 5x2 + 3x3 = 17 7x1 + 2x2 + 2x3 =
lara [203]

Answer:

a. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

Step-by-step explanation:

Solving a system of linear equations using matrix method, we may define a system of equations with the same number of equations as variables as:

A\cdot X=B

where X is the matrix representing the variables of the system,  B is the matrix representing the constants, and A is the coefficient matrix.

Then the solution is this:

X=A^{-1}B

a. Given the system:

3x_1 + 2x_2 + 4x_3 = 5 \\2x_1 + 5x_2 + 3x_3 = 17 \\7x_1 + 2x_2 + 2x_3 = 11

The coefficient matrix is:

A=\left[\begin{array}{ccc}3&2&4\\2&5&3\\7&2&2\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}5&17&11\\\end{array}\right]

First, we need to find the inverse of the A matrix. To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be inverse matrix.

So, augment the matrix with identity matrix:

\left[ \begin{array}{ccc|ccc}3&2&4&1&0&0 \\\\ 2&5&3&0&1&0 \\\\ 7&2&2&0&0&1\end{array}\right]

This matrix can be transformed by a sequence of elementary row operations to the matrix

\left[ \begin{array}{ccc|ccc}1&0&0&- \frac{2}{39}&- \frac{2}{39}&\frac{7}{39} \\\\ 0&1&0&- \frac{17}{78}&\frac{11}{39}&\frac{1}{78} \\\\ 0&0&1&\frac{31}{78}&- \frac{4}{39}&- \frac{11}{78}\end{array}\right]

And the inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right]

Next, multiply A^ {-1} by B

X=A^{-1}\cdot B

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right] \cdot \left[\begin{array}{c}5&17&11\end{array}\right]

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}-\frac{2}{39}&-\frac{2}{39}&\frac{7}{39}\\ -\frac{17}{78}&\frac{11}{39}&\frac{1}{78}\\ \frac{31}{78}&-\frac{4}{39}&-\frac{11}{78}\end{pmatrix}\begin{pmatrix}5\\ 17\\ 11\end{pmatrix}=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. To solve this system of equations

x -y - z = 0 \\30x + 40y = 12 \\30x + 50z = 12

The coefficient matrix is:

A=\left[\begin{array}{ccc}1&-1&-1\\30&40&0\\30&0&50\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x&y&z\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&12&12\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} \frac{20}{47} & \frac{1}{94} & \frac{2}{235} \\\\ - \frac{15}{47} & \frac{4}{235} & - \frac{3}{470} \\\\ - \frac{12}{47} & - \frac{3}{470} & \frac{7}{470} \end{array} \right]

The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. To solve this system of equations

4x_1 + 2x_2 + x_3 + 5x_4 = 0 \\3x_1 + x_2 + 4x_3 + 7x_4 = 1\\ 2x_1 + 3x_2 + x_3 + 6x_4 = 1 \\3x_1 + x_2 + x_3 + 3x_4 = 4\\

The coefficient matrix is:

A=\left[\begin{array}{cccc}4&2&1&5\\3&1&4&7\\2&3&1&6\\3&1&1&3\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&1&1&4\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{cccc} - \frac{1}{9} & - \frac{1}{9} & - \frac{1}{9} & \frac{2}{3} \\\\ - \frac{32}{9} & - \frac{5}{9} & \frac{13}{9} & \frac{13}{3} \\\\ - \frac{28}{9} & - \frac{1}{9} & \frac{8}{9} & \frac{11}{3} \\\\ \frac{7}{3} & \frac{1}{3} & - \frac{2}{3} & -3 \end{array} \right]

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

7 0
3 years ago
Read 2 more answers
In the figure, BCND is a rectangle and CGNR is a rhombus. The area of BCND is 90 and BC = 10. What is 3GR?
PIT_PIT [208]

Answer:

3GR=27


Step-by-step explanation:

<u>Since area of rectangle BCND is given as 90 and one of its side is 10, the other side MUST be 9.</u>

<u>CN*BC=90\\CN*10=90\\CN=9</u>


In Rhombus CGNR, CN and GR are congruent (property of Rhombus). Hence GR = 9 as well.

Thus 3GR = 3(9) = 27

First answer choice is right.


6 0
3 years ago
Other questions:
  • A sale of 1/4 off the original price of $100
    11·2 answers
  • The graph shows the number of paintballs a machine launches, y, in x seconds:
    14·1 answer
  • On the children's baseball field shown, the distance from the pitcher's mound to home plate is 50 feet. The distance from the pi
    13·2 answers
  • The word product mean Multiplication
    10·2 answers
  • How could i figure this out?
    10·2 answers
  • Solve :<br><br> y=3.58•x+ 202.6<br> &amp;<br> y=2.3•x+160.7
    6·1 answer
  • Solve the equation 8·4^x+1=1​
    7·1 answer
  • Which of the following best describes the expression 7(y + 5)?
    8·1 answer
  • ABC~DEF. ABC has a perimeter of 18 and a leg of 5. The base of DEF is 34.4. What is the perimeter of DEF.
    7·1 answer
  • Change the subject of the formula L = v 4kt - p to k.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!