Hello : let A(0,3,2) and (Δ) this line , v vector parallel to (<span>Δ). M</span>∈ (Δ) : vector (AM) = t v..... t ∈ R
1 ) (Δ) parallel to the plane x + y + z = 5 : let : n an vector <span>perpendicular to the plane : n </span>⊥ v .... n(1,1,1) so : n.v =0 means : n.vector (AM) = 0 (1)(x)+(1)(y-3)+(1)(z -2) =0 ( vector (AM) = ( x, y -3 , z-2 ) x+y+z - 5=0 ...(1)
2) (Δ) perpendicular to the line (Δ') : x = 1+t , y = 3 - t , z = 2t : vector (u) ⊥ v .... vector(u) parallel to (Δ') and vector(u) = (1 , -1 ,1) vector (u) ⊥ vector (AM) means : (1)(x)+(-1)(y-3)+(2)(z -2) =0 x - y+2z - 1 = 0 ...(2) so the system : x+y+z - 5=0 ...(1) x - y+2z - 1 = 0 ...(2) (1)+(2) : 2x+3z - 6 =0 x = 3 - (3/2)z subsct in (1) : 3 - (3/2)z +y +z - 5 =0 y = 1/2z +2 let : z=t an parametric equations for the line (Δ) is : x = 3 - (3/2)t y = (1/2)t +2 z=t
verifiy : 1) (Δ) parallel to the plane x + y + z = 5 : (-3/2 , 1/2 ,1) <span>perpendicular to (1,1,1) </span>because : (1)(-3/2)+(1)(1/2)+(1)(1) = -1 +1 = 0 2) (Δ) perpendicular to the line (Δ') : (-3/2 , 1/2 ,1) perpendicular to (1,-1,2) because : (1)(-3/2)+(-1)(1/2)+(1)(2) = -2 +2 = 0 A(0, 3, 2)∈(Δ) : 0 = 3-(3/2)t 3 = (1/2)t+2 2 =t same : t = 2