I think it is 32, bc the value of x is 20 so your problem would look like this; 2 ( (20) - 4 )
The <em>proposed</em> design of the atrium (<em>V < V'</em>) is possible since its volume is less than the <em>maximum possible</em> atrium.
<h3>Can this atrium be built in the rectangular plot of land?</h3>
The atrium with the <em>maximum allowable</em> radius (<em>R</em>), in feet, is represented in the image attached. The <em>real</em> atrium is possible if and only if the <em>real</em> radius (<em>r</em>) is less than the maximum allowable radius and therefore, the <em>real</em> volume (<em>V</em>), in cubic feet, must be less than than <em>maximum possible</em> volume (<em>V'</em>), in cubic feet.
First, we calculate the volume occupied by the maximum allowable radius:
<em>V' =</em> (8 · π / 3) · (45 ft)³
<em>V' ≈</em> 763407.015 ft³
The <em>proposed</em> design of the atrium (<em>V < V'</em>) is possible since its volume is less than the <em>maximum possible</em> atrium. 
To learn more on volumes, we kindly invite to check this verified question: brainly.com/question/13338592
Answer:
24s^2, 54s^2, 96s^2
Step-by-step explanation:
Let s represent the initial side length of the cube. Then the area of each face of the cube is A = 6s^2 (recalling that the area of a square of side length s is s^2).
a) Now suppose we double the side length. The total area of the 6 faces of the cube will now be A = 6(2s)^2, or 24s^2 (a 24 times larger surface area),
b) tripled: A = 6(3s)^2 = 54x^2
c) quadrupled? A = 6(4s)^2 = 96s^2
I would say no but i don't know how to do your problem by how your describing it sorry :(