We will use two definitions to solve this problem. The first will be given by the conservation of energy, whereby the change in kinetic energy must be equivalent to work. At the same time, work can be defined as the product between the force by the distance traveled. By matching these two expressions and clearing for the Force we can find the desired variable.


Thus the force acting on the sled is,

Replacing,


Therefore the Force acting on the sled is 32N
Answer:
Yes
Explanation:
Eclipses: Eclipses are also known as game of shadows where one object comes between the star(light source) and another object in a straight line such that the shadow of one object falls on other object. This can occur when the apparent size of the star and the object is almost same.
Talking about the Earth, the geometry is such that the Moon and the Sun are of same apparent size as seen from the Earth. Thus Lunar and Solar eclipse can be seen from the Earth. If we were to go on any other planet the same phenomenon can be seen provided the apparent size of moon and the Sun from that planet is same.
We have seen and recorded many such eclipses on Jupiter. These are from the perspective of Earth. When the moons of Jupiter comes exactly between the Sun and Jupiter the shadow of moon will fall on Jupiter. The places where the shadow falls, one will see a solar eclipse.
Answer: The rising and setting of the Sun.
The appearance and disappearance of the Moon.
Changes in season.
Appearance and disappearance of the Stars.
Explanation: The rising and setting of the Sun helps can be used as a standard to determine time since the rissing and setting of the Sun occurs at similar time and interval in a given geographical ocation.
The appearance and disappearance of the Moon which occurs during the night and early hours of the morning is similar in a given geographical locationation so it can be used as a standard for Time.
Change in season is another natural phenomenon which occurs at similar times in a given geographical location like Winter/summer, rainy/dry etc can be used as standards for time.
The appearance and disappearance of the Stars can also b used as standards for time in a given geographical location.
I believe the answer is tru
Answer:
-107 m
Explanation:
Sum of forces in the y direction:
∑F = ma
-qE = ma
a = -qE/m
a = -(1.60×10⁻¹⁹ C) (304 N/C) / (9.11×10⁻³¹ kg)
a = -53.4×10¹² m/s²
Given in the y direction:
v₀ = 0 m/s
a = -53.4×10¹² m/s²
t = 2×10⁻⁶ s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (2×10⁻⁶ s) + ½ (-53.4×10¹² m/s²) (2×10⁻⁶ s)²
Δy = -107 m