Answer:

☯ Question :
- How fast is a wave travelling if it has a wavelength of 7 meters and a frequency of 11 Hz?
☯ 
☥ Given :
- Wavelength ( λ ) = 7 meters
- Frequency ( f ) = 11 Hz
☥ To find :
☄ We know ,

where ,
- v = speed of sound
- f = frequency
- λ = wavelength
Now, substitute the values and solve for v.
➺ 
➺ 
-------------------------------------------------------------------
✑ Additional Info :
- Frequency : The number of complete vibrations made by a particle of a body in one second is called it's frequency. It is denoted by the letter f . The SI unit of frequency is hertz ( Hz ).
- Wavelength : The distance between two consecutive compressions or rarefactions of a sound wave is called wavelength of that wave. It is denoted by λ ( lambda ) and it's SI unit is m.
- Speed of a sound wave : The distance covered by a sound wave in one second is called speed of sound wave. It depends on the product of wavelength and frequency of the wave.
Hope I helped!
Have a wonderful time! ツ
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
The gravitational force between two objects is given by

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
In this problem,

,

and

, therefore the gravitational force between the two objects is
heat released Q = 749 joules
heat of fusion of silver L = 109 J/g
Here phase of silver is changing from liquid to solid
so temperature will remain same
all heat will be released due to its phase change
and in this case we use Q=mL
where m is the mass of silver in gram
Q= mL
749 = m * 109
m = 749/109
m = 6.87 gram
Answer:
88.2 C
Explanation:
The current can be defined as the rate of flow of charge in a conductor.
The relation between charge current and time is given as
I = Q/T
I = current, Q= charge and T = time
that is ampere = coulomb / second
The amount of charge passed is from the negative to the positive terminal
shall be given by:
Q = I * t = 3.5mA * 7h * 3600s/h = 88.2 C
Note: take care of the units.