Answer:
(a) 
(b) 
(c)
(d)
Solution:
As per the question:
Refractive index of medium 1, 
Angle of refraction for medium 1, 
Angle of refraction for medium 2, 
Now,
(a) The expression for the refractive index of medium 2 is given by using Snell's law:

where
= Refractive Index of medium 2
Now,

(b) The refractive index of medium 2 can be calculated by using the expression in part (a) as:


(c) To calculate the velocity of light in medium 1:
We know that:
Thus for medium 1
(d) To calculate the velocity of light in medium 2:
For medium 2:
Answer:
The Earth's magnetism is generated in the core, which is composed of iron that is constantly churning
Explanation:
Magnetic fields are produced by charges in motion, therefore by currents.
The outer core of the Earth consists mainly of melted iron that is in constant motion. This iron in motion actually acts as a giant current, and therefore it is responsible for the creation of the Earth's magnetic field.
The magnetic field of the Earth is very weak, in fact its magnitude is on average between 25 and 65 microtesla (for comparison, normal magnets can even produce magnetic fields of a few millitesla).
However, its role is very important for the Earth: in fact, it provides a shield that blocks most of the harmful radiation coming from the Sun.
A person is submerged of about 97.9%.
The average density of the human body is given as 979 kg/ m³.
<h3>Define Law of floatation.</h3>
Law of floatation can be defined as the volume of the liquid displaced when a body floats on the liquid surface is equal to the body submerged in the water.
As body has the stable equilibrium state, the buoyancy of the fluid will be equal to the weight.
Weight of the body floating = Weight of the body immersed in fluid
Law of floatation = Density of the floating object / density of fluid
As fluid is the freshwater here, the density of fluid will be 1000 kg/ m³.
= (979 kg/ m³) / ( 1000 kg/ m³)
= 97.9 %
A person is submerged when floating gently in fresh water about 97.9%.
Learn more about law of floatation,
brainly.com/question/17032479
#SPJ4
Answer:
54%
Explanation:
So, we have that the "magnitude of its displacement from equilibrium is greater than (0.66)A—''. Thus, the first step to take in answering this question is to write out the equation showing the displacement in simple harmonic motion which is = A cos w×t.
Therefore, we will have two instances t the displacement that is to say at a point 2π/w - a2 and the second point at a = a2.
Let us say that 2π/w = A, then, we have that a = A cos ^-1 (0.66)/2π. Also, we have that a2 = A/2 - A cos^- (0.66) / 2π.
The next thing to do is to calculate or determine the total length of of the required time. Thus, the total length is given as:
2a1 + ( A - 2a2) = 2A{ cos^-1 (0.66)}/ π.
Therefore, the total percentage of the period does the mass lie in these regions = 100 × {2a1 + ( A - 2a2) }/A = 2 { cos^-1 (0.66)}/ π × 100 = 54%.
Thus, the total percentage of the period does the mass lie in these regions = 54%.
Answer:
After finding the electric potential VP at point P = Q/Чπϵ₀L ㏑(1+
)
Explanation:
I believe it is a part C question.
The derivative of V and P will be directly proportional to the differential dq and the inverse of Чπϵ₀δ........
Please find detailed solution in the attached picture as i believe that is the answer to the part C question you are seeking for.