1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddik [55]
3 years ago
11

As a city planner, you receive complaints from local residents about the safety of nearby roads and streets. One complaint conce

rns a stop sign at the corner of Pine Street and 1st Street. Residents complain that the speed limit in the area (55 mph) is too high to allow vehicles to stop in time. Under normal conditions this is not a problem, but when fog rolls in visibility can reduce to only 155 feet. Since fog is a common occurrence in this region, you decide to investigate. The state highway department states that the effective coefficient of friction between a rolling wheel and asphalt ranges between 0.536 and 0.599, whereas the effective coefficient of friction between a skidding (locked) wheel and asphalt ranges between 0.350 and 0.480. Vehicles of all types travel on the road, from small VW bugs weighing 1150 lb to large trucks weighing 9360 lb. Considering that some drivers will brake properly when slowing down and others will skid to stop,
a) calculate the miminim and maximum braking distance needed to ensure that all vehicles traveling at the posted speed limit can stop before reaching the intersection.
b) Given that the goal is to allow all vehicles to come safely to a stop before reaching the intersection, calculate the maximum desired speed limit. (Round your answer to the nearest whole number.)
Physics
1 answer:
WINSTONCH [101]3 years ago
5 0

Answer:

a)   x₁ = 290.50 feet ,  x₂ = 169.74 feet , b)  v_max= 41 mph

Explanation:

For this exercise we will work in two parts, the first with Newton's second law to find the acceleration of vehicles

X Axis          fr = m a

Y Axis          N-W = 0

                    N = W = mg

The force of friction has the expression

                  fr = μ N

We replace

                 μ mg = ma

                 a = μ g

                 g = 32 feet / s²

Let's calculate the acceleration for each coefficient and friction

μ              a (feet / s2)

0.599       19.168

0.536       17,152

0.480       15.360

0.350        11.200

These are the acceleration values, for the maximum distance we use the minimum acceleration (a₁ = 11,200 feet / s²) and for the minimum braking distance we use the maximum acceleration (x₂ = 19,168 feet / s²)

                 v² = v₀² - 2 a x

When the speed stops it is zero

                 x₁ = v₀² / 2 a₁

                         

Let's reduce speed

            v₀ = 55mph (5280 foot / 1 mile) (1h / 3600s) = 80,667 feet / s²

Let's calculate the maximum braking distance

            x₁ = 80.667² / (2 11.2)

            x₁ = 290.50 feet

The minimum braking distance

            x₂ = 80.667² / (2 19.168)

            x₂ = 169.74 feet

b) maximum speed to stop at distance x = 155 feet

            0 = v₀² - 2 a x

            v₀ = √2 a x

We calculate the speed for the two accelerations

             v₀₁ = √ (2 11.2 155)

             v₀₁ = 58.92 feet / s

       

             v₀₂ = √ (2 19.168 155)

             v₀₂ = 77.08 feet / s

To stop at the distance limit in the worst case the maximum speed must be 58.92 feet / s = 40.85 mph = 41 mph

You might be interested in
What unit of measure would you use for mass?
creativ13 [48]

grams, pounds, kilos, etc

6 0
3 years ago
Tim and Rick both can run at speed Vr and walk at speed Vw, with Vr > Vw.
miss Akunina [59]

Answer:

Δt =  \frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw}

Explanation:

Hi there!

Using the equation of speed for the whole trip, we can obtain the time each one needed to cover the distance D.

The speed (v) is calculated by dividing the traveled distance (d) over the time needed to cover that distance (t):

v = d/t

Rick traveled half of the distance at Vr and the other half at Vw. Then, when v = Vr, the distance traveled was D/2 and the time is unknown, Δt1:

Vr = D/ (2 · Δt1)

For the other half of the trip the expression of velocity will be:

Vw = D/(2 · Δt2)

The total time traveled is the sum of both Δt:

Δt(total) = Δt1 + Δt2

Then, solving the first equation for Δt1:

Vr = D/ (2 · Δt1)

Δt1 = D/(2 · Vr)

In the same way for the second equation:

Δt2 = D/(2 · Vw)

Δt + Δt2 = D/(2 · Vr) + D/(2 · Vw)

Δt(total) = D/2 · (1/Vr + 1/Vw)

The time needed by Rick to complete the trip was:

Δt(total) = D/2 · (1/Vr + 1/Vw)

Now let´s calculate the time it took Tim to do the trip:

Tim walks half of the time, then his speed could be expressed as follows:

Vw = 2d1/Δt  Where d1 is the traveled distance.

Solving for d1:

Vw · Δt/2 = d1

He then ran half of the time:

Vr = 2d2/Δt

Solving for d2:

Vr · Δt/2 = d2

Since d1 + d2 = D, then:

Vw · Δt/2 +  Vr · Δt/2 = D

Solving for Δt:

Δt (Vw/2 + Vr/2) = D

Δt = D / (Vw/2 + Vr/2)

Δt = D/ ((Vw + Vr)/2)

Δt = 2D / (Vw + Vr)

The time needed by Tim to complete the trip was:

Δt = 2D / (Vw + Vr)

Let´s find the diference between the time done by Tim and the one done by Rick:

Δt(tim) - Δt(rick)

2D / (Vw + Vr) - (D/2 · (1/Vr + 1/Vw))

\frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw} = Δt

Let´s check the result. If Vr = Vw:

Δt = 2D/2Vr - D/2Vr - D/2Vr

Δt = D/Vr - D/Vr = 0

This makes sense because if both move with the same velocity all the time both will do the trip in the same time.

8 0
3 years ago
When a man returns to his well-sealed house on a summer day, he finds that the house is at 35°C. He turns on the air conditioner
Paul [167]

Answer:

1353.38 Watt

Explanation:

T₁ = Initial temperature of the house = 35°C

T₂ = Final temperature of the house = 20°C

Δt = Time taken to cool the house = 38 min = 38×60 = 2280 s

m = mass of air in the house = 800 kg

Cv = Specific heat at constant volume = 0.72 kJ/kgK

Cp = Specific heat at constant pressure = 1.0 kJ/kgK

Heat removed

q = mCvΔT

⇒q = 800×720×(35-20)

⇒q = 8640000 J

Average rate of hear removal

Q=\frac{q}{\Delta t}\\\Rightarrow Q=\frac{8640000}{2280}\\\Rightarrow Q=3789.47\ W

COP=\frac{Q}{W}\\\Rightarrow W=\frac{Q}{COP}\\\Rightarrow W=\frac{3789.47}{2.8}\\\Rightarrow W=1353.38\ W

∴ Power drawn by the air conditioner is 1353.38 Watt

6 0
2 years ago
Read 2 more answers
What is the original source of hydroelectric energy
tangare [24]

Differences in land elevation result in rainfall runoff, and allow some of the original solar energy to be captured as hydro-electric power (Figure 1). Hydro power is currently the world's largest renewable source of electricity, accounting for 6% of worldwide energy supply or about 15% of the world's electricity.

hope this helps

mark brainliest  :)

6 0
3 years ago
An object accelerating at 16 m/s/s doubles its mass and triples its net force acting on it. What will the new acceleration be? (
nataly862011 [7]

Answer:

24 m/s²

Explanation:

The given parameters are;

The initial acceleration of the object, a = 16 m/s²

Let 'm' represent the initial mass of the object

The initial force acting on the object, F = m × a

∴ F = 16 × m = 16·m

When the mass is doubled, we have;

The new mass of the object, m₂ = 2 × m = 2·m

When the net force acting on the object triples, we have;

The new net force acting on the object, F₂ = 3 × F = 3 × 16·m = 48·m

From F = m × a, we have;

a = F/m

∴ The new acceleration of the object, a₂ = F₂/m₂

From which, by plugging in the values, we have;

a₂ = 48·m/(2·m) = 24

The new acceleration of the object, a₂ = 24 m/s².

6 0
3 years ago
Other questions:
  • A large, simple pendulum is on display in the lobby of the United Nations building. If the pendulum is 18.5 m in length, what is
    13·1 answer
  • What does the prefix kilo mean?
    9·2 answers
  • When the time of day for a certain ship at sea is 12 noon, the time of day at the prime meridian (0 longitude0 is 5 pm. what is
    9·1 answer
  • The alliance that was formed between Hitler and Mussolini was known as the _____________.
    15·1 answer
  • When does fertilization take place
    10·1 answer
  • An object of mass 4 kg is initially at rest on a frictionless ice rink. It suddenly explodes into three pieces (I have no idea w
    12·1 answer
  • A 5.3 kg block initially at rest is pulled to the right along a frictionless, horizontal surface by a constant horizontal force
    7·2 answers
  • 400 Kelvin to degrees Celsius​
    10·2 answers
  • The angle between reflected ray and the normal line is
    11·1 answer
  • Power is calculated by multiplying voltage by
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!