<span>won
adjective
Verb phrases are verbs that may function as a predicate, adjective, or adverb. </span>
(a) "That he said" is an adjective modifying "word". However, this contains the s ubject"he" and the verb "said". It is a clause and NOT a phrase. Phrases can only have either a verb or a noun.
<span>(b) There's only one verb "was" but it does not come with a complement, object, modifier, or other verb. Hence, it's NOT a verb phrase. </span>
<span>(c) "Shall be" consists of the modal shall and the be-verb be. This is a perfect example of a verb phrase that functions as a VERB PHRASE. </span>
<span>(d) "Roared" and "charged" are two verbs referring to different subjects. They do not come with a complement, object, modifier, or another verb. Hence, they're NOT a verb phrase. "As the bull charged" is a clause and not a phrase.</span>
Answer:
A bug must swim as fast as the wave speed to keep up with the waves it produces. Moreso, a boat must be moving faster than the waves it creates to produce a bow wave.
Answer:
266.67Watts
Explanation:
Time = 2.5hr to seconds
3600s = 1hr
2.5hrs = 3600×2.5= 9000s
Force = 32N
Distance = 75km to m
1000m = 1km
75km = 1000×75 = 75000m
Power = workdone / time
Work = force × distance
Therefore work = 32N × 75000m
Work = 2400000Nm
Power = work ➗ time
Power = 2400000Nm ➗ 9000s
Power = 266.67Watts
Watts is the S. i unit of power
I hope this was helpful, please mark as brainliest
Answer:
a) x = v₀² sin 2θ / g
b) t_total = 2 v₀ sin θ / g
c) x = 16.7 m
Explanation:
This is a projectile launching exercise, let's use trigonometry to find the components of the initial velocity
sin θ =
/ vo
cos θ = v₀ₓ / vo
v_{oy} = v_{o} sin θ
v₀ₓ = v₀ cos θ
v_{oy} = 13.5 sin 32 = 7.15 m / s
v₀ₓ = 13.5 cos 32 = 11.45 m / s
a) In the x axis there is no acceleration so the velocity is constant
v₀ₓ = x / t
x = v₀ₓ t
the time the ball is in the air is twice the time to reach the maximum height, where the vertical speed is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
t = v_{o} sin θ / g
we substitute
x = v₀ cos θ (2 v_{o} sin θ / g)
x = v₀² /g 2 cos θ sin θ
x = v₀² sin 2θ / g
at the point where the receiver receives the ball is at the same height, so this coincides with the range of the projectile launch,
b) The acceleration to which the ball is subjected is equal in the rise and fall, therefore it takes the same time for both parties, let's find the rise time
at the highest point the vertical speed is zero
v_{y} = v_{oy} - gt
v_{y} = 0
t = v_{oy} / g
t = v₀ sin θ / g
as the time to get on and off is the same the total time or flight time is
t_total = 2 t
t_total = 2 v₀ sin θ / g
c) we calculate
x = 13.5 2 sin (2 32) / 9.8
x = 16.7 m
Answer: The correct answer is "magnetic field".
Explanation:
A magnetic field is produced around the current carrying wire.
If you bring compass needle around the current carrying wire then it shows the deflection which indicates that there is a magnetic field around the current carrying wire.
Magnetic fields are the area around the surrounding of magnet in which magnetic force can be experienced.
Therefore, a magnetic field is produced around a wire when an electrical current is in the wire.