Answer:
At a certain pizza parlor,36 % of the customers order a pizza containing onions,35 % of the customers order a pizza containing sausage, and 66% order a pizza containing onions or sausage (or both). Find the probability that a customer chosen at random will order a pizza containing both onions and sausage.
Step-by-step explanation:
Hello!
You have the following possible pizza orders:
Onion ⇒ P(on)= 0.36
Sausage ⇒ P(sa)= 0.35
Onions and Sausages ⇒ P(on∪sa)= 0.66
The events "onion" and "sausage" are not mutually exclusive, since you can order a pizza with both toppings.
If two events are not mutually exclusive, you know that:
P(A∪B)= P(A)+P(B)-P(A∩B)
Using the given information you can use that property to calculate the probability of a customer ordering a pizza with onions and sausage:
P(on∪sa)= P(on)+P(sa)-P(on∩sa)
P(on∪sa)+P(on∩sa)= P(on)+P(sa)
P(on∩sa)= P(on)+P(sa)-P(on∪sa)
P(on∩sa)= 0.36+0.35-0.66= 0.05
I hope it helps!
Answer:
0
Step-by-step explanation:
You can't make 0.2 as a whole number so we can round it to the nearest whole number, 0.
Answer:
12.5
Step-by-step explanation:
Possible unit is m³
<u>Step-by-step explanation:</u>
- The possible unit for volume of a cone is m³
- Volume of a cone = Base area × Height
- Here unit for volume will be square units and that of height will be in units. Together, they form cubic units.
- In the given options, the only unit that is in cubic form is m³
Answer: Option A

Step-by-step explanation:
In the graph we have a piecewise function composed of a parabola and a line.
The parabola has the vertex in the point (0, 2) and cuts the y-axis in y = 2.
The equation of this parabola is
Then we have an equation line
Note that the interval in which the parabola is defined is from -∞ to x = 1. Note that the parabola does not include the point x = 1 because it is marked with an empty circle " о ."
(this is
)
Then the equation of the line goes from x = 1 to ∞ . In this case, the line includes x = 1 because the point at the end of the line is represented by a full circle
.
(this is
)
Then the function is:
