Two similarities between constructing a perpendicular line through a point on a line and constructing a perpendicular through a point off a line are;
- 1. Arcs are drawn to cross the given line twice on either side relative to the point
- 2. The perpendicular line is drawn using a straight edge by connecting the small arcs formed using the arcs from step 1, to the point on the line or off the line
Description:
1. One of the first steps is to place the compass on the point and from
point, draw arcs to intersect or cross the given line at two points.
2. The compass is placed at each of the intersection point in step 1 and
(opened a little wider when constructing from a point on the line) arcs are
drawn on one (the other side of the point off the line) side of the line with
the same opening (radius) of the compass to intersect each other.
3. From the point of intersection of the arcs in step 2, a line is drawn with a
straight edge passing through the given point.
Learn more about perpendicular lines here:
brainly.com/question/11505244
In order to utilize the graph, first you have to distinguish which graph accurately pertains to the two functions.
This can be done by rewriting the equations in the form y = mx + b which can be graphed with ease; where m is the slope and b is the y intercept.
-x^2 + y = 1
y = x^2 + 1
So this will be a basic y = x^2 parabola where the center intercepts on the y axis at (0, 1)
-x + y = 2
y = x +2
So this will be a basic y = x linear where the y intercept is on the y axis at (0, 2)
The choice which depicts these two graphs correctly is the first choice. The method to find the solutions to the system of equations by using the graph is by determining the x coordinate of the points where the two graphed equations intersect.
(n + 7)2 = n - 1
2n +14 = n - 1
2n - n +14 = n - n - 1
n + 14 -14 = -1 - 14
n = -15
(-15 + 7)2 = -15 - 1
(-8)2 = -16
-16 = -16
Hello.
The Manager has concluded that 2 out of 25 light bulbs are faulty.The table he created represents the ratio of bulbs checked and which ones were found faulty.
A way that he could verify that the table is correct is by simplifying each ratio. If each of them turn out to 2:25, then the conclusion is correct.
The best answer that matches this is answer choice "C.)" as it also defines our method of verifying the table's validity (just the order of the ratio is reversed, and that's fine as long as the variables are matching as well). We can further prove that this answer is correct by making ratios of our table and simplifying them;
100:8; divide both sides by 4.
25:2
500:40; divide both sides by 20.
25:2
2,000:160; divide both sides by 80.
25:2
This ratio is always the simplified answer.
Your answer is: "C.)"
I hope this helps!