You can write three equations in the numbers of nickels (n), dime (d), and quarters (q).
n + d + q = 23 . . . . . . . there are 23 coins total
0n +d -q = 2 . . . . . . . . .there are 2 more dimes than quarters
5n +10d +25q = 250 . .the total value is $2.50
The collection includes 11 nickels, 7 dimes, and 5 quarters.
_____
I used the matrix function of my calculator to solve these equations. You can find q by subtracting from the last equation five times the sum of the first two equations.
(5n +10d +25q) -5((n +d +q) +(d -q)) = (250) -5(23 +2)
25q = 125 . . . . . . . simplify
q = 5
From the second equation,
d = q +2 = 7
And from the first,
n = 23 -5 -7 = 11
Answer: 3 would be a adjacent angle
Step-by-step explanation:
They don’t overlap
1. 15/3:3/3
2. 5:1
1. find the same denominator
2. divide by denominator
Answer:
4x4=? then we have 2x2=?
Step-by-step explanation: H-JJ-
Answer:
∠x = 90°
∠y = 58°
∠z = 32°
Step-by-step explanation:
he dimensions of the angles given are;
∠B = 32°
Whereby ΔABC is a right-angled triangle, and the square fits at angle A, we have;
∠A = 90°
∠B + ∠C = 90° which gives
32° + ∠C = 90°
∠C = 58°
∠x + Interior angle of the square = 180° (Sum of angles on a straight line)
∠x + 90° = 180°
∠x = 90°
∠x + ∠y + 32° = 180° (Sum of angles in a triangle)
90° + ∠y + 32° = 180°
∠y = 180 - 90° - 32° = 58°
∠y + ∠z + Interior angle of the square = 180° (Sum of angles on a straight line)
58° + ∠z +90° = 180°
∴ ∠z = 32°
∠x = 90°
∠y = 58°
∠z = 32°