The given quadrilateral ABCD is a parallelogram since the opposite sides are of same length AB and DC is 4 and AD and BC is 2.
<u>Step-by-step explanation</u>:
ABCD is a quadrilateral with their opposite sides are congruent (equal).
The both pairs of opposite sides are given as AB = 3 + x
, DC = 4x
, AD = y + 1
, BC = 2y.
- AB and DC are opposite sides and have same measure of length.
- AD and BC are opposite sides and have same measure of length.
<u>To find the length of AB and DC :</u>
AB = DC
3 + x = 4x
Keep x terms on one side and constant on other side.
3 = 4x - x
3 = 3x
x = 1
Substiute x=1 in AB and DC,
AB = 3+1 = 4
DC = 4(1) = 4
<u>To find the length of AD and BC :</u>
AD = BC
y + 1 = 2y
Keep y terms on one side and constant on other side.
2y-y = 1
y = 1
Substiute y=1 in AD and BC,
AD = 1+1 = 2
BC = 2(1) = 2
Therefore, the opposite sides are of same length AB and DC is 4 and AD and BC is 2. The given quadrilateral ABCD is a parallelogram.
what do you need help with
Answer:
Graph #1
Step-by-step explanation:
Compare your
y - 1 = (2/3)(x - 3) to
y - k = m(x - h). We see that k = 1 and h = 3.
Thus, (1, 3) is a point on the graph. This matches Graph #1.
Note: Graph #1 and Graph #3 appear to be the same. Why?
<h3>
Answer:</h3>
a. -(3√13)/13
<h3>
Step-by-step explanation:</h3>
The cosine can be found from the tangent by way of the secant.
tan(θ)² +1 = sec(θ)² = 1/cos(θ)²
Then ...
cos(θ) = ±1/√(tan(θ)² +1)
The <em>cosine is negative in the second quadrant</em>, so we will choose that sign.
cos(θ) = -1/√((-2/3)² +1) = -1/√(4/9 +1) = -1/√(13/9)
cos(θ) = -3/√13 = -(3√13)/13 . . . . . matches your selection A