Answer:
Cos A=5/13
we have
Cos² A=
25/169=1-Sin²A
sin²A=1-25/169
sin²A=144/169
Sin A=
again
Tan B=4/3
P/b=4/3
p=4
b=3
h=
Now
Sin B=p/h=4/5
in IV quadrant sin angle is negative so
Sin B=-4/5
CosB=b/h=3/5
Now
<u>S</u><u>i</u><u>n</u><u>(</u><u>A</u><u>+</u><u>B</u><u>)</u><u>:</u><u>s</u><u>i</u><u>n</u><u>A</u><u>c</u><u>o</u><u>s</u><u>B</u><u>+</u><u>C</u><u>o</u><u>s</u><u>A</u><u>s</u><u>i</u><u>n</u><u>B</u>
<u>n</u><u>o</u><u>w</u><u> </u>
<u>substitute</u><u> </u><u>value</u>
<u>Sin(A+B):</u>12/13*3/5+5/13*(-4/5)=36/65-4/13
<u>=</u><u>1</u><u>6</u><u>/</u><u>6</u><u>5</u><u> </u><u>i</u><u>s</u><u> </u><u>a</u><u> </u><u>required</u><u> </u><u>answer</u>
Answer:
what?
Step-by-step explanation:
A. I would suggest including <em>all</em> units in your answer. Both answers are correct but the unit is also important.
average rate of change:
($750 - $350) / (2014 - 2010) = $400 / (4 years) = $100 per year
initial value:
$350
B. Take 2010 to be year 0. Then for year <em>x</em> = 0, the fee is <em>y</em> = $350.
If the fee increases at a rate of $100 per year, this means that when <em>x</em> = 1, <em>y</em> = $350 + $100 = $450. So the graph of the function that models the dog-walking fee is a line that passes through the points (0, 350) and (1, 450), adn the slope of this line is
(450 - 350) / (1 - 0) = 100/1 = 100
which is the same as the average rate of change.
Using the point-slope formula for a line, the equation you want is then
<em>y</em> - 350 = 100 (<em>x</em> - 0)
<em>y</em> - 350 = 100<em>x</em>
<em>y</em> = 100<em>x</em> + 350