Answer: The mean is <u>556.4</u> ppm.
The standard deviation is<u> 84.92</u> ppm.
Step-by-step explanation:
Let X denotes the concentration of carbon (ppm) .
Given :
X p(x)
350 0.08
440 0.11
560 0.48
640 0.33
The mean(expected value) is given by :-
![E[x]=\sum x p(x)](https://tex.z-dn.net/?f=E%5Bx%5D%3D%5Csum%20x%20p%28x%29)
![\Rightarrow\ E[x]=(350)(0.08)+(440)(0.11)+(560)(0.48)+(640)(0.33)=556.4](https://tex.z-dn.net/?f=%5CRightarrow%5C%20E%5Bx%5D%3D%28350%29%280.08%29%2B%28440%29%280.11%29%2B%28560%29%280.48%29%2B%28640%29%280.33%29%3D556.4)
Hence, the mean is <u>556.4</u> ppm.
Now, ![E[x^2]=\sum x^2 p(x)](https://tex.z-dn.net/?f=E%5Bx%5E2%5D%3D%5Csum%20x%5E2%20p%28x%29)
![\Rightarrow\ E[x]=(350)^2(0.08)+(440)^2(0.11)+(560)^2(0.48)+(640)^2(0.33)=316792](https://tex.z-dn.net/?f=%5CRightarrow%5C%20E%5Bx%5D%3D%28350%29%5E2%280.08%29%2B%28440%29%5E2%280.11%29%2B%28560%29%5E2%280.48%29%2B%28640%29%5E2%280.33%29%3D316792)
![\text{Var(x)}=E[x^2]-[E[x]]^2\\\\=316792-556.4^2\\\\=316792-309580.96=7211.04](https://tex.z-dn.net/?f=%5Ctext%7BVar%28x%29%7D%3DE%5Bx%5E2%5D-%5BE%5Bx%5D%5D%5E2%5C%5C%5C%5C%3D316792-556.4%5E2%5C%5C%5C%5C%3D316792-309580.96%3D7211.04)
Standard deviation: 
Hence, The standard deviation is<u> 84.92</u> ppm.