The polynomial p(x)=x^3-6x^2+32p(x)=x 3 −6x 2 +32p, left parenthesis, x, right parenthesis, equals, x, cubed, minus, 6, x, squar
Ray Of Light [21]
Answer:
(x-4)(x-4)(x+2)
Step-by-step explanation:
Given p(x) = x^3-6x^2+32 when it is divided by x - 4, the quotient gives
x^2-2x-8
Q(x) = P(x)/d(x)
x^3-6x^2+32/x- 4 = x^2-2x-8
Factorizing the quotient
x^2-2x-8
x^2-4x+2x-8
x(x-4)+2(x-4)
(x-4)(x+2)
Hence the polynomial as a product if linear terms is (x-4)(x-4)(x+2)
Answer:
option 3: 3(10+5) = 30+15
Step-by-step explanation:
Answer:
steps below
Step-by-step explanation:
3.2.1 AD = DB* sin 2 = DB * sin θ .. DE // AB ∠2= θ ... (1)
By laws of sines: DB / sin ∠5 = x / sin ∠4
∠4 = θ-α ∠5 = 180°-<u>∠1</u>-∠4 = 180°-<u>∠3</u>-∠4 = 180°-(90°-θ)-(θ-α)) = 90°+α
DB = (x*sin ∠5)/sin (θ-α)
= (x* sin (90°+α)) / sin (θ-α)
AD = DB*sinθ
= (x* sin (90°+α))*sinθ / sin (θ-α)
= x* (sin90°cosα+cos90°sinα)*sinθ / sin (θ-α) .... sin90°=1, cos90°=0
= x* cosα* sinθ / sin (θ-α)
3.2.2 Please apply Laws of sines to calculate the length
<span>4(2x - 5) = 4
8x - 20 = 4
8x = 4 + 20
8x = 24
x = </span>

x = 3
Part A:This equation has only one solution. {Working shown above}
Part B:The solution is x = 3. {Working shown above}