Given J(1, 1), K(3, 1), L(3, -4), and M(1, -4) and that J'(-1, 5), K'(1, 5), L'(1, 0), and M'(-1, 0). What is the rule that tran
anastassius [24]
(x; y) -> (x - 2; y + 4)
J(1; 1) ⇒ J'(1 - 2; 1 + 4) = (-1; 5)
K(3; 1) ⇒ K'(3 - 2; 1 + 4) = (1; 5)
L(3;-4) ⇒ L'(3 - 2; -4 + 4) = (1; 0)
M(1;-4) ⇒ M'(1 - 2;-4 + 4) = (-1; 0)
Answer:
A.) y = 0.4x^(2) + 3.4x + 4
Step-by-step explanation:
x = -5
y = -3
1. Balance after 1 year with simple interest= 600 + (2.5 x 12) = 600 + 30 = $630
2. Balance after 1 year with compounded interest = P ( 1 +
= 600 ( 1 + = 600 (1.0511) = $630.66 = approx. $630
Answer:
0
Step-by-step explanation:
The equation is undefined.