For this case we have the following equation:
r = 9 sin (θ)
In addition, we have the following change of variables:
y = r * sine (θ)
Rewriting the equation we have:
r = 9 sin (θ)
r = 9 (y / r)
r ^ 2 = 9y
On the other hand:
r ^ 2 = x ^ 2 + y ^ 2
Substituting values:
x ^ 2 + y ^ 2 = 9y
Rewriting:
x ^ 2 + y ^ 2 - 9y = 0
Completing squares:
x ^ 2 + y ^ 2 - 9y + (-9/2) ^ 2 = (-9/2) ^ 2
Rewriting:
x ^ 2 + 1/4 (2y-9) ^ 2 = 81/4
4x ^ 2 + (2y-9) ^ 2 = 81
Answer:
The Cartesian equation is:
4x ^ 2 + (2y-9) ^ 2 = 81
<span>(4 · 2^5) ÷ (2^3 · 1/16 )
</span>= (2^2 · 2^5) ÷ (2^3 · 2^-4 )
= (2^7) ÷ (2^-1)
= 2^8
<span>87 degrees
https://www.algebra.com/algebra/homework/Parallelograms/Parallelograms.faq.question.313985.html
</span>
I will do (a) only.
6rt - 3st + 6ru - 3su
6rt - 3st = 3t(2r - s)
6ru - 3su = 3u(2r - s)
Answer: (3t + 3u)(2r - s)
Do the rest likewise.