Answer:
209.4 mm³
Step-by-step explanation:
V = (πr²h)/3
V = (200π)/3
Plug it into a calculator to get 209.4.
Answer:
d is your Answer .............
The first thing you should do when dealing with implicit derivatives is to respect the rules of derivation of both the logarithm and the exponential
Then, you must regroup the terms correctly until you get dy / dx
The answer for this case is D
I attach the solution
The rate at which the water from the container is being drained is 24 inches per second.
Given radius of right circular cone 4 inches .height being 5 inches, height of water is 2 inches and rate at which surface area is falling is 2 inches per second.
Looking at the image we can use similar triangle propert to derive the relationship:
r/R=h/H
where dh/dt=2.
Thus r/5=2/5
r=2 inches
Now from r/R=h/H
we have to write with initial values of cone and differentiate:
r/5=h/5
5r=5h
differentiating with respect to t
5 dr/dt=5 dh/dt
dh/dt is given as 2
5 dr/dt=5*-2
dr/dt=-2
Volume of cone is 1/3 π
We can find the rate at which the water is to be drained by using partial differentiation on the volume equation.
Thus
dv/dt=1/3 π(2rh*dr/dt)+(
*dh/dt)
Putting the values which are given and calculated we get
dv/dt=1/3π(2*2*2*2)+(4*2)
=1/3*3.14*(16+8)
=3.14*24/3.14
=24 inches per second
Hence the rate at which the water is drained from the container is 24 inches per second.
Learn more about differentaiation at brainly.com/question/954654
#SPJ4
Answer:
3 < c < 13
Step-by-step explanation:
A triangle is known to have 3 sides: Side a, Side b and Side c.
For a triangle, one of the three sides is longer than the other two sides. (The only exception is when we are told specifically that a triangle is an equilateral triangle, where all the 3 sides are equal to each other).
To solve the above question, we would be using the Triangle Inequality Theorem.
The Triangle Inequality Theorem states that the summation or addition of the lengths of any two sides of a triangle is greater than the length of the third side.
Side a + Side b > Side c
Side a + Side c > Side b
Side b + Side c > Side a
For the above question, we have 2 possible side lengths for the third side of the triangle. We are given in the above question,
side (a) = 5
side (b) = 8
Let's represent the third side as c
To solve for the above question,we would be having the following Inequality.
= b - a < c < b + a
= 8 - 5 < c < 8 + 5
= 3 < c < 13