1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DochEvi [55]
3 years ago
14

Which is longer 1/4 foot or 1/4 yard?

Mathematics
1 answer:
Hitman42 [59]3 years ago
7 0
1/4 yard is longer because it takes 3 feet to equal to 1 yard
You might be interested in
En el estante de un negocio hay 2 tipos de tarros de la misma mermelada y marca. El tarro más alto tiene el doble de altura que
Ipatiy [6.2K]

Answer:

tarro corto

Step-by-step explanation:

Aquí tenemos que comprar el frasco que tiene el menor costo por volumen.

h_1 = Altura del frasco corto

h_2 = La altura del frasco alto es el doble que el del frasco corto. = 2h_1

d_1 = Diámetro del frasco corto

d_2 = El diámetro del frasco alto es la mitad del frasco corto = \dfrac{1}{2}d_1

El volumen de un cilindro es \pi \dfrac{d^2}{4}h

La razón de los volúmenes de los frascos es

\dfrac{V_1}{V_2}=\dfrac{\pi\dfrac{d_1^2}{4}h_1}{\pi\dfrac{d_2^2}{4}h_2}\\\Rightarrow \dfrac{V_1}{V_2}=\dfrac{d_1^2h_1}{d_2^2h_2}\\\Rightarrow \dfrac{V_1}{V_2}=\dfrac{d_1^2h_1}{(\dfrac{1}{2}d_1)^22h_1}\\\Rightarrow \dfrac{V_1}{V_2}=\dfrac{d_1^2h_1}{\dfrac{1}{4}d_1^22h_1}\\\Rightarrow \dfrac{V_1}{V_2}=\dfrac{1}{\dfrac{1}{2}}\\\Rightarrow \dfrac{V_1}{V_2}=2\\\Rightarrow V_1=2V_2

El costo del frasco corto por unidad de volumen es

\dfrac{8000}{V_1}=\dfrac{8000}{2V_2}=\dfrac{4000}{V_2}

El costo del frasco alto por unidad de volumen es

\dfrac{4500}{V_2}=\dfrac{4500}{V_2}

\dfrac{4000}{V_2}

Entonces, el costo del frasco corto por unidad de volumen es menor que el costo por unidad de volumen del frasco alto.

Por lo tanto, deberíamos tomar el frasco corto.

5 0
3 years ago
4- A manufacturing process produces items whose weights are normally distributed. It is known that 22.57% of all the items produ
galben [10]

Answer:

\\ \mu = 118\;grams\;and\;\sigma=30\;grams

Step-by-step explanation:

We need to use z-scores and a standard normal table to find the values that corresponds to the probabilities given, and then to solve a system of equations to find \\ \mu\;and\;\sigma.

<h3>First Case: items from 100 grams to the mean</h3>

For finding probabilities that corresponds to z-scores, we are going to use here a <u>Standard Normal Table </u><u><em>for cumulative probabilities from the mean </em></u><em>(Standard normal table. Cumulative from the mean (0 to Z), 2020, in Wikipedia) </em>that is, the "probability that a statistic is between 0 (the mean) and Z".

A value of a z-score for the probability P(100<x<mean) = 22.57% = 0.2257 corresponds to a value of z-score = 0.6, that is, the value is 0.6 standard deviations from the mean. Since this value is <em>below the mean</em> ("the items produced weigh between 100 grams up to the mean"), then the z-score is negative.

Then

\\ z = -0.6\;and\;z = \frac{x-\mu}{\sigma}

\\ -0.6 = \frac{100-\mu}{\sigma} (1)

<h3>Second Case: items from the mean up to 190 grams</h3>

We can apply the same procedure as before. A value of a z-score for the probability P(mean<x<190) = 49.18% = 0.4918 corresponds to a value of z-score = 2.4, which is positive since it is after the mean.

Then

\\ z =2.4\;and\; z = \frac{x-\mu}{\sigma}

\\ 2.4 = \frac{190-\mu}{\sigma} (2)

<h3>Solving a system of equations for values of the mean and standard deviation</h3>

Having equations (1) and (2), we can form a system of two equations and two unknowns values:

\\ -0.6 = \frac{100-\mu}{\sigma} (1)

\\ 2.4 = \frac{190-\mu}{\sigma} (2)

Rearranging these two equations:

\\ -0.6*\sigma = 100-\mu (1)

\\ 2.4*\sigma = 190-\mu (2)

To solve this system of equations, we can multiply (1) by -1, and them sum the two resulting equation:

\\ 0.6*\sigma = -100+\mu (1)

\\ 2.4*\sigma = 190-\mu (2)

Summing both equations, we obtain the following equation:

\\ 3.0*\sigma = 90

Then

\\ \sigma = \frac{90}{3.0} = 30

To find the value of the mean, we need to substitute the value obtained for the standard deviation in equation (2):

\\ 2.4*30 = 190-\mu (2)

\\ 2.4*30 - 190 = -\mu

\\ -2.4*30 + 190 = \mu

\\ \mu = 118

7 0
3 years ago
An isosceles triangle has a perimeter of 33 cm. The unequal side has a length 3 cm more than the equal side. Find the length of
grigory [225]

Answer:

let equal side=x

unequal side=x+3

perimeter =33

x+x+x+3=33

3x=30

x=10

x+3=10+3

6 0
3 years ago
8. Jia's Fashions recently paid a $2 annual dividend. The company is projecting that its dividends will grow by 20 percent next
ArbitrLikvidat [17]

Answer:

the stock will sell for $59.16

Step-by-step explanation:

P0 =  2 * (1+0.2) / (1+0.105)  +  2 * (1+0.2) * (1+0.12)  /  (1+0.105)^2  +  

2*(1+0.2)*(1+0.12)^2 / (1+0.105)^3 +

[(2 * (1+0.2) * (1+0.12)^2 * (1+0.06) / (0.105-0.06))  /  (1+0.105)^3 ]

P0 = $59.16

7 0
2 years ago
Latitud y longitud de la República Dominicana
REY [17]

Answer:

Uwu

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Solve the equation 8x-12=5+15
    14·2 answers
  • Compute the value of the test statistic for testing H0: p = 0.1 vs. Ha: p ≠ 0.1 for n = 480, mc061-1.jpg= 0.12.
    8·1 answer
  • Initially a tank has 60 gallons of water. A brine solution with 1 pound of salt per gallon enters the (continuously stirred and
    8·1 answer
  • Trish runs 3 miles every 50 minutes. At this rate, how many minutes did Trish tun 12 miles? plzzz help me!!!
    12·2 answers
  • Find the surface area of the prisim
    14·1 answer
  • Divide.
    15·1 answer
  • Help me! The question is in the image
    14·1 answer
  • An examination started 12.50 pm and lasted for 2 and half hours. at what time did it end​
    8·2 answers
  • When written in standard form,which polynomial had a leading coefficient of 5?
    12·2 answers
  • Solve for the missing variable<br><br> 3.5x=14
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!