To justify the yearly membership, you want to pay at least the same amount as a no-membership purchase, otherwise you would be losing money by purchasing a yearly membership. So set the no-membership cost equal to the yearly membership cost and solve.
no-membership costs $2 per day for swimming and $5 per day for aerobic, in other words, $7 per day. So if we let d = number of days, our cost can be calculated by "7d"
a yearly membership costs $200 plus $3 per day, or in other words, "200 + 3d"
Set them equal to each other and solve:
7d = 200 + 3d
4d = 200
d = 50
So you would need to attend the classes for at least 50 days to justify a yearly membership. I hope that helps!
Answer:
D, or the last one.
Step-by-step explanation:
Brainliest?
Answer:
Please check the explanation
Step-by-step explanation:
Given the function

Given that the output = -3
i.e. y = -3
now substituting the value y=-3 and solve for x to determine the input 'x'


switch sides

Add 1 to both sides


![\mathrm{For\:}g^3\left(x\right)=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}](https://tex.z-dn.net/?f=%5Cmathrm%7BFor%5C%3A%7Dg%5E3%5Cleft%28x%5Cright%29%3Df%5Cleft%28a%5Cright%29%5Cmathrm%7B%5C%3Athe%5C%3Asolutions%5C%3Aare%5C%3A%7Dg%5Cleft%28x%5Cright%29%3D%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1-%5Csqrt%7B3%7Di%7D%7B2%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1%2B%5Csqrt%7B3%7Di%7D%7B2%7D)
Thus, the input values are:
![x=-\sqrt[3]{2}+5,\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}-i\frac{\sqrt[3]{2}\sqrt{3}}{2},\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}+i\frac{\sqrt[3]{2}\sqrt{3}}{2}](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D-i%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D%2Bi%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D)
And the real input is:
![x=-\sqrt[3]{2}+5](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5)
Answer:
The answer is below⬇️⬇️
Step-by-step explanation:
f(x) = 3x+4
g(x) = 2x
h(x) = x²+x-2
g(hx) = 2(x²+x-2)
= 2x²+2x-4
f(g(hx))=3(2x²+2x-4)+4
=6x²+6x-12+4
=6x²+6x-8
g(f(g(hx)))=2(6x²+6x-8)
=12x²+12x-16
f(g(f(g(hx))))=3(12x²+12x-16)+4
=36x²+36x-48+4
=36x²+36x-44
h(f(g(f(g(hx)))))=(36x²+36x-44)²+36x²+36x-44-2
=1296x⁴+2592x³-1872x²-3168x+1936+36x²+36x-46
=1296x⁴+2592x³-1836x²-3132x+1890
f(h(f(g(f(g(hx))))))=3(1296x⁴+2592x³-1836x²-3132x+1890)+4
=3888x⁴+7776x³-5508x²-9396x+5674
h(f(h(f(g(f(g(hx)))))))=(3888x⁴+7776x³-5508x²-9396x+5674)²+3888x⁴+7776x³-5508x²-9396x+5674-2
=15116544x⁸+60466176x⁷+17635968x⁶-158723712x⁵-71663616x⁴+657591048x³-255531048x²-106635204x+32194276
For this case we have the following functions:
When x = 0 we have: For y1:

For y2:

Therefore, we have to:
When x = 5 we have: For y2:

For y3:

Therefore, we have to:
When x = -1 we have: For y1:

For y2:

For y3:

Therefore, we have to:
Answer:
When x = 0, y1 = y2
When x = 5, y2 <y3
When x = -1, y3 <y1 <y2