Answer:
Step-by-step explanation:
![\dfrac{\sqrt{5}-1}{\sqrt{5}+1}=\dfrac{(\sqrt{5}-1)(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\\\\=\dfrac{5-2\sqrt{5}+1}{5-1}=\dfrac{6-2\sqrt{5}}{4}\\\\=\dfrac{3}{2}-\dfrac{1}{2}\sqrt{5}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%7B5%7D-1%7D%7B%5Csqrt%7B5%7D%2B1%7D%3D%5Cdfrac%7B%28%5Csqrt%7B5%7D-1%29%28%5Csqrt%7B5%7D-1%29%7D%7B%28%5Csqrt%7B5%7D%2B1%29%28%5Csqrt%7B5%7D-1%29%7D%5C%5C%5C%5C%3D%5Cdfrac%7B5-2%5Csqrt%7B5%7D%2B1%7D%7B5-1%7D%3D%5Cdfrac%7B6-2%5Csqrt%7B5%7D%7D%7B4%7D%5C%5C%5C%5C%3D%5Cdfrac%7B3%7D%7B2%7D-%5Cdfrac%7B1%7D%7B2%7D%5Csqrt%7B5%7D)
Comparing this to the form a+b√5, we see that ...
a = 3/2
b = -1/2
Answer:
There are 75 ways to form the committee.
Step-by-step explanation:
The order in which the people are chosen is not important, which means that the combinations formula is used to solve this question.
Combinations formula:
is the number of different combinations of x objects from a set of n elements, given by the following formula.
In this question:
Considering the eldest has to be there, 2 men from a set of 6 and 4 boys from a set of 5(excluding the youngest), so:
![T = C_{6,2}C_{5,4} = \frac{6!}{2!4!} \times \frac{5!}{1!4!} = 3*5*5 = 75](https://tex.z-dn.net/?f=T%20%3D%20C_%7B6%2C2%7DC_%7B5%2C4%7D%20%3D%20%5Cfrac%7B6%21%7D%7B2%214%21%7D%20%5Ctimes%20%5Cfrac%7B5%21%7D%7B1%214%21%7D%20%3D%203%2A5%2A5%20%3D%2075)
There are 75 ways to form the committee.
I saw this same type of question and page but with different numbers just 5 minutes ago...
Anyway here’s the answers:
1) Complementary
3x+1+44=90
3x+45=90
3x=45
x=5
2) Vertical
Ignore everything about the work. The answer is 120 degrees because they’re vertical angles.
3) Supplementary
15x-5+110=180
15x+105=180
15x=75
x=5
And I can’t see the last question clearly
![\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right]](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7BFuture%20Value%20of%20an%20ordinary%20annuity%7D%0A%5C%5C%5C%5C%0AA%3Dpymnt%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7Br%7D%7Bn%7D%20%5Cright%29%5E%7Bnt%7D-1%7D%7B%5Cfrac%7Br%7D%7Bn%7D%7D%20%5Cright%5D)
![\bf \begin{cases} A= \begin{array}{llll} \textit{original amount}\\ \textit{already compounded} \end{array} & \begin{array}{llll} \end{array}\\ pymnt=\textit{periodic payments}\to & \begin{array}{llll} 485\cdot 12\\ \underline{5280} \end{array}\\ r=rate\to 6\%\to \frac{6}{100}\to &0.06\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{a year, thus once} \end{array}\to &1\\ t=years\to &4 \end{cases} \\\\\\ ](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0AA%3D%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A%5Ctextit%7Boriginal%20amount%7D%5C%5C%0A%5Ctextit%7Balready%20compounded%7D%0A%5Cend%7Barray%7D%20%26%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A%0A%5Cend%7Barray%7D%5C%5C%0Apymnt%3D%5Ctextit%7Bperiodic%20payments%7D%5Cto%20%26%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A485%5Ccdot%2012%5C%5C%0A%5Cunderline%7B5280%7D%0A%5Cend%7Barray%7D%5C%5C%0Ar%3Drate%5Cto%206%5C%25%5Cto%20%5Cfrac%7B6%7D%7B100%7D%5Cto%20%260.06%5C%5C%0An%3D%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A%5Ctextit%7Btimes%20it%20compounds%20per%20year%7D%5C%5C%0A%5Ctextit%7Ba%20year%2C%20thus%20once%7D%0A%5Cend%7Barray%7D%5Cto%20%261%5C%5C%0A%0At%3Dyears%5Cto%20%264%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0A)
![\bf A=5280\left[ \cfrac{\left( 1+\frac{0.06}{1} \right)^{1\cdot 4}-1}{\frac{0.06}{1}} \right]](https://tex.z-dn.net/?f=%5Cbf%20A%3D5280%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7B0.06%7D%7B1%7D%20%5Cright%29%5E%7B1%5Ccdot%20%204%7D-1%7D%7B%5Cfrac%7B0.06%7D%7B1%7D%7D%20%5Cright%5D)
Joe is making $485 payments monthly, but the amount gets interest on a yearly basis, not monthly, so the amount that yields interest is 485*12
also, keep in mind, we're assuming is compound interest, as opposed to simple interest