Using the normal distribution, it is found that 58.97% of students would be expected to score between 400 and 590.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
The mean and the standard deviation are given, respectively, by:

The proportion of students between 400 and 590 is the <u>p-value of Z when X = 590 subtracted by the p-value of Z when X = 400</u>, hence:
X = 590:


Z = 0.76
Z = 0.76 has a p-value of 0.7764.
X = 400:


Z = -0.89
Z = -0.89 has a p-value of 0.1867.
0.7764 - 0.1867 = 0.5897 = 58.97%.
58.97% of students would be expected to score between 400 and 590.
More can be learned about the normal distribution at brainly.com/question/27643290
#SPJ1
This wouldn't be a good concert to take your little sister to (or for any kids in general) since the median (2nd quartile) age of the audience is 33. Also, it mainly ranges from 15 to 40 (since 15 is the first quartile and 40 is the third quartile). This means the concert is mainly for teens to adults.
Hello There!
It would be:
4x² + 5x - 6 = 0
Hope This Helps You!
Good Luck :)
- Hannah ❤