Our sun is quite average when looking at all the stars in the Universe. There are stars that are smaller, like Wolf359, and there are also larger stars, like Betelgeuse. Our sun is essentially right in the middle of the star-size spectrum.
Answer:
C) the magnitude of the acceleration is a minimum.
Explanation:
As we know that ,the general equation of the simple harmonic motion given as
The displacement x given as
x=X sinω t
Then the velocity v will become
v= X ω cosωt
The acceleration a
a= - X ω² sinω t
The speed of the particle will be maximum when cosωt will become 1 unit.
It means that sinωt will become zero.So acceleration and displacement will be minimum.
Therefore when speed is maximum then acceleration will be minimum.
At the mean position the speed of the particle is maximum that is why kinetic energy also will be maximum and the potential energy will be minimum.
Therefore option C is correct.
Answer: 51N
Explanation: T = mv^2/r 51 = 76v^2/1.3 v =.934
Had to look for the options and here is my answer.
The statement that is considered correct regarding a wave that is propagating along the pavement and girders of a suspension bridge is this: "t<span>he wave is mechanical, with particles vibrating in a direction that is perpendicular to that of the wave, forming compressions and rarefactions." Hope this helps.</span>
Answer:
Stars are huge celestial bodies made mostly of hydrogen and helium that produce light and heat from the churning nuclear forges inside their cores. Aside from our sun, the dots of light we see in the sky are all light-years from Earth.
Explanation:
Stars are the most widely recognized astronomical objects, and represent the most fundamental building blocks of galaxies. The age, distribution, and composition of the stars in a galaxy trace the history, dynamics, and evolution of that galaxy. Moreover, stars are responsible for the manufacture and distribution of heavy elements such as carbon, nitrogen, and oxygen, and their characteristics are intimately tied to the characteristics of the planetary systems that may coalesce about them. Consequently, the study of the birth, life, and death of stars is central to the field of astronomy.
Stars are born within the clouds of dust and scattered throughout most galaxies. A familiar example of such as a dust cloud is the Orion Nebula. Turbulence deep within these clouds gives rise to knots with sufficient mass that the gas and dust can begin to collapse under its own gravitational attraction. As the cloud collapses, the material at the center begins to heat up. Known as a protostar, it is this hot core at the heart of the collapsing cloud that will one day become a star. Three-dimensional computer models of star formation predict that the spinning clouds of collapsing gas and dust may break up into two or three blobs; this would explain why the majority the stars in the Milky Way are paired or in groups of multiple stars.