Answer;
= 3.86 × 10^8 Meters
Explanation;
-The distance between the Earth and the moon is 386000 km
But; 1 km = 1000 m
Therefore; 386000 km will be equivalent to;
= 386000 × 1000
= 386000000 m
= 3.86 × 10^8 meters
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>
The acceleration of the object is 
Explanation:
We can solve the problem by using Newton's second law, which states that the net force exerted on an object is equal to the product between the mass of the object and its acceleration:

where
F is the net force
m is the mass of the object
a is its acceleration
For the object in this problem,
F = 500 N is the applied force
m = 75 kg is the force
Solving the equation for a, we find the acceleration:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
The Flemings left hand rule is used to find the magnitude of a magnetic force
Explanation:
Fleming's left hand rule states that if the first three fingers are held mutually at right angles to one another, then the fore finger points into the direction of magnetic field the middle finger in the direction of current while the thumb points in the direction of force.
Mathematically
Magnetic Force F= BILsinθ
Where
B= magnetic field density Tesla
I= current
L= length of conductor
θ= angle of conductor with field
Answer:
<h2>velocity = 12.73 km/hr.</h2><h2 />
Explanation:
velocity = distance / time
=<u> 28 km </u>
2.2 hr
= 12.73 km/hr.