Answer:
no it is mean call people their names
Explanation:
because if my name was Shar i would want people to call me Shar not negro
time should you wait between pushes is 2.83 sec.
the question is incomplete, full statement is-
A 24 kg child sits on a 2.0-m-long rope swing. You are going to give the child a small, brief push at regular intervals. If you want to increase the amplitude of her motion as quickly as possible, how much time should you wait between pushes?
<h3>What is Amplitude?</h3>
In physics, amplitude refers to the greatest displacement or distance that a point on a vibrating body or wave may move relative to its equilibrium location. It is equivalent to the vibration path's half-length.
regular interval - at similarly spaced intervals: having the same interval of time between occurrences From 4 a.m. to midnight, the buses operate at regular intervals. The boards are positioned at regular intervals, with an equal amount of space between each.
The length of swing, l = 2.1 m
The time between the pushes is nothing but the Time period
and is given by the formula,

= 2 * 3.14 ( 2.0/ 9.8 ) ^ (1/2)
= 2.83 sec
to learn more about Amplitude go to - brainly.com/question/3613222
#SPJ4
Answer:
The correct answer is B)
Explanation:
When a wheel rotates without sliding, the straight-line distance covered by the wheel's center-of-mass is exactly equal to the rotational distance covered by a point on the edge of the wheel. So given that the distances and times are same, the translational speed of the center of the wheel amounts to or becomes the same as the rotational speed of a point on the edge of the wheel.
The formula for calculating the velocity of a point on the edge of the wheel is given as
= 2π r / T
Where
π is Pi which mathematically is approximately 3.14159
T is period of time
Vr is Velocity of the point on the edge of the wheel
The answer is left in Meters/Seconds so we will work with our information as is given in the question.
Vr = (2 x 3.14159 x 1.94m)/2.26
Vr = 12.1893692/2.26
Vr = 5.39352619469
Which is approximately 5.39
Cheers!
<h2>
<em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em><em><u>S</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em></h2>
<em>1) The relationship in between the electrical energy carriesd by the transmission wires and the amount of the heat loss in it is due to the reason that when the electricity is flown through the wires there are some resistance found in these wires which creates a disturbance in the efficient flow of electricty.Also we know that current have an heating effect when it is in motion as due to if a large amount or magnitude of electricity is flown through the transmission wires it will carry a larger heat effected and also due to the resistance is provided by the wires and so the process of heat loss takes place.</em>
<em>2)It is important to minimize current in transmission wires due to minimize the heat loss and resistance on flowing electric current to make the system more efficient </em>
<em><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u></em><em> 3)Given Resistance = 250 ohms </em>
<em>Electric potential = 150 volts </em>
<em>so we know Power = </em>
<em>volt^2/Resistance = </em>
<em>=</em><em>(150^2/250)(ohms/volts)</em>
<em>=</em><em>(22500/250)watt = 9</em><em>0</em><em> </em><em>w</em><em>a</em><em>t</em><em>t</em><em> </em>
<em>4)Heat energy (H) = Power(P)×Time(t)</em>
<em>4)Heat energy (H) = Power(P)×Time(t)= (90×2)joules = 180 joul</em><em>e</em><em>s</em>
<em>H</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>t</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em>s</em>
Answer:
<h2>
d₂ = 3d</h2><h2>
The diameter of the second wire is 3 times that of the initial wire.</h2>
Explanation:
Using the formula for calculating the resistivity of an object to find the diameter.
Resistivity P = RA/L
R is the resistance of the material
A is the cross sectional area
L is the length of the material
Since A = πd²/4
P = R( πd²/4)/L
P = Rπd²/4L ... 1
If the second wire of the same material and length is found to have resistance R/9, the resistivity of the second material will be;
P₂ = (R/9)A₂/L₂
P₂ = (R/9)(πd₂²/4)/L₂
P₂ = (Rπd₂²/36)/L₂
P₂ = (Rπd₂²)/36L₂
Since the length and resistivity are the same;
P = P₂ and L =L₂
Equating 1 and 2;
Rπd²/4L = (Rπd₂²)/36L₂
Rπd²/4L = (Rπd₂²)/36L
d² = d₂²/9
d₂² = 9d²
Taking the square root of both sides;
√d₂² = √9d²
d₂ = 3d
Therefore the diameter of the second wire is 3 times that of the initial wire