Answer:
The Henry's law constant for argon is 
Explanation:
Henry's Law indicates that the solubility of a gas in a liquid at a certain temperature is proportional to the partial pressure of the gas on the liquid.
C = k*P
where C is the solubility, P the partial pressure and k is the Henry constant.
So, being the concentration
where ngas is the number of moles of gas and V is the volume of the solution, you must calculate the number of moles ngas. This is determined by the Ideal Gas Law: P*V=n*R*T where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas. So 
In this case:
- P=PAr= 1 atm
- V=VAr= 5.16*10⁻² L
- R=0.082

- T=25 °C=298 °K
Then:

Solving:
n= 2.11 *10⁻³ moles
So: 
Using Henry's Law and being C=CAr and P
=PAr:
2.11*10⁻³ M= k* 1 atm
Solving:

You get:

<u><em>The Henry's law constant for argon is </em></u>
<u><em></em></u>
Iron becomes rusted especially in damp air but never in a dry air, this is one of the many unique characteristics of iron. Iron is also ductile and malleable. It is found in the seventh group of the periodic table. It has four different and unique crystalline forms and completely dissolves in dilute acids. The two chemical compounds that can be found or made from iron are the bivalent iron also known as ferrous and the trivalent iron or known as ferric compounds.
Answer:
Increase the pressure of the gas
Explanation:
According to the Pressure law, for a fixed mass of gas, at a constant volume (V), the pressure (P) is directly proportional to the absolute temperature (T).
From the kinetic molecular theory, gases are composed of particles which are in constant motion, colliding with themselves as well as with the walls of their container.
When the temperature of these gas molecules is increased, the molecules acquire more kinetic energy and the rate of collisions increases. Since the container cannot expand, the increase in pressure is due to the increase in collisions between the molecules of the gas as well as with the walls of their container.
The shape of the H2O molecule is a Bent Triatomic.
It isn't symmetrical.
The H2O molecule is polar.