1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margaret [11]
3 years ago
11

The mr William two questions please!

Mathematics
1 answer:
melamori03 [73]3 years ago
5 0

well, in short, the students and chaperones are at a 2 : 9 ratio, and we know there are 171 students, how many chaperones then, so long they maintain a 2:9 ratio?

\bf \cfrac{chaperones}{students}\qquad 2:9\qquad \cfrac{2}{9}\qquad \qquad \cfrac{x}{171}=\cfrac{2}{9}\implies 9x=2(171) \\\\\\ 9x=342\implies x=\cfrac{342}{9}\implies x=38

You might be interested in
Multiply the numbers and simplify the answer: 3 x 1- 3/4
madam [21]
\underbrace{3\times1}_{first}-\frac{3}{4}=3-\frac{3}{4}=2\frac{1}{4}

3\times1\frac{3}{4}=3\times\frac{1\times4+3}{4}=3\times\frac{4+3}{4}=\frac{3}{1}\times\frac{7}{4}=\frac{3\times7}{4}=\frac{21}{4}=\frac{20+1}{4}=\frac{20}{4}+\frac{1}{4}\\\center\boxed{=5\frac{1}{4}}
5 0
3 years ago
Find the length of EF
Lisa [10]

Answer:

9

Step-by-step explanation:

1. First, we need to set up an equation to find the value of x and then the length of EF.

2. We know that DG is equal to 33, so we can add all the three sections it's cut into altogether to get 33. Therefore, we get an equation of: 3x - 28 + 3x - 30 + x = 33

3. (Solving for x)

Step 1: Simplify both sides of the equation.

  • 3x - 28 + 3x - 30 + x = 33
  • (3x+3x+x) + (-28-30)=33
  • 7x - 58 = 33

Step 2: Add 58 to both sides.

  • 7x - 58 + 58 = 33 + 58
  • 7x = 91

Step 3: Divide both sides by 7.

  • \frac{7x}{7} = \frac{91}{7}
  • x = 13

4. Now that we know x is equal to 13, we can plug that value in for the expression 3x - 30.

  • 3(13)-30
  • 39 - 30
  • 9

Therefore, the length of EF is 9.

7 0
3 years ago
A circular mirror has a diameter of 18 inches. What is the area of the mirror?
Veronika [31]

Answer:

254.34

Step-by-step explanation:

pie (3.14...) Radius(9) 9^2=81

3.14 times 81 is 254.34

3 0
3 years ago
Read 2 more answers
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
2 years ago
Ac=22 bc=x+14 ab=x+10 find x
Nesterboy [21]

AB + BC = AC                 <em>Segment Addition Postulate</em>

(x + 10) + (x + 14) = 22     <em>Substitution</em>

2x + 24 = 22                   <em>Simplify (added like terms)</em>

2x = -2                            <em>Subtraction Property of Equality</em>

x = -1                               <em>Divison Property of Equality</em>

Answer: x = -1

5 0
3 years ago
Other questions:
  • a baseball helmet cost $42 coach Rodger said he would pay $274 for 7 helmets is the exact answer reasonable
    8·1 answer
  • WILL GIVE BRAINLEST
    15·1 answer
  • How can you find the domain of this sequence:2,4,6,8,10,12
    12·1 answer
  • How do i solve this equation a over c is equal to d over a to solve for a
    10·2 answers
  • Help mee please F G H OR J PLEASE and no guessing please
    9·2 answers
  • Jack spends 15% of his pocket money on sweets and 35% on magazines. He saves the rest
    5·1 answer
  • Systems of equations, help please?
    5·1 answer
  • I need help. This has to be in within a hour. Question 3, Will mark branliest if helped!
    14·1 answer
  • PLZ HELP QUICK WILL MARK BRAINLIEST
    8·1 answer
  • Monty Ricker obtained a used car loan of $6,000.00 at 8% for 36 months. The monthly payment is $ 187.80. The balance of the loan
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!