Answer:
the difference is due to resistance tolerance
Explanation:
In mathematical calculations, either done by hand or in a computer program, the heat taken from the resistors is the nominal value, which is the writing in its color code, so all calculations give a result, but the Resistors have a tolerance, indicated by the last band that is generally 5%, 10%, 20% and in the expensive precision resistance can reach 1%.
This tolerance or fluctuation in the resistance value is what gives rise to the difference between the computation values and the values measured with the instruments, multimeters.
Another source of error also occurs due to temperature changes in the circuit that affect the nominal resistance value, there is a very high resistance group that indicates the variation with the temperature, they are only used in critical circuits, due to their high cost
In summary, the difference is due to resistance tolerance.
The number of charge drifts are 3.35 X 10⁻⁷C
<u>Explanation:</u>
Given:
Potential difference, V = 3 nV = 3 X 10⁻⁹m
Length of wire, L = 2 cm = 0.02 m
Radius of the wire, r = 2 mm = 2 X 10⁻³m
Cross section, 3 ms
charge drifts, q = ?
We know,
the charge drifts through the copper wire is given by
q = iΔt
where Δt = 3 X 10⁻³s
and i = 
where R is the resistance
R = 
ρ is the resistivity of the copper wire = 1.69 X 10⁻⁸Ωm
So, i = 
q = 
Substituting the values,
q = 3.14 X (0.02)² X 3 X 10⁻⁹ X 3 X 10⁻³ / 1.69 X 10⁻⁸ X 0.02
q = 3.35 X 10⁻⁷C
Therefore, the number of charge drifts are 3.35 X 10⁻⁷C
At the bottom of the thermometer and it slowly goes up as the temperature changes