Answer:
θ = 2 π n_1 + π/2 for n_1 element Z or θ = 2 π n_2 for n_2 element Z
Step-by-step explanation:
Solve for θ:
cos(θ) + sin(θ) = 1
cos(θ) + sin(θ) = sqrt(2) (cos(θ)/sqrt(2) + sin(θ)/sqrt(2)) = sqrt(2) (sin(π/4) cos(θ) + cos(π/4) sin(θ)) = sqrt(2) sin(θ + π/4):
sqrt(2) sin(θ + π/4) = 1
Divide both sides by sqrt(2):
sin(θ + π/4) = 1/sqrt(2)
Take the inverse sine of both sides:
θ + π/4 = 2 π n_1 + (3 π)/4 for n_1 element Z
or θ + π/4 = 2 π n_2 + π/4 for n_2 element Z
Subtract π/4 from both sides:
θ = 2 π n_1 + π/2 for n_1 element Z
or θ + π/4 = 2 π n_2 + π/4 for n_2 element Z
Subtract π/4 from both sides:
Answer: θ = 2 π n_1 + π/2 for n_1 element Z
or θ = 2 π n_2 for n_2 element Z
Answer: 
Step-by-step explanation:
Get rid of parentheses: 
Add all the numbers together, and all the variables: 
Move all terms containing x to the left, all other terms to the right:



Answer: y=46
Step-by-step explanation:
Subtract 6 from either side to ensure that the y is alone. This then equals y=52-6.
52-6= 46
So therefore, y=46
Answer$32
Step-by-step explanation:
125 divided by 2 = 31.25 +00.05+32
5 x 6 + 7? Is that what the answer is, I didn't get the question towards the end. :)