The pythagorean theorem equation is a^2 (a squared) + b^2 (b squared) = c^2 (c squared)
so a^2+b^2=c^2
I believe the formula to find the height would be h= 2a/b and if you use that formula and plug in the area (21.7) of each triangle as well as the base (6) then you would get a height of 7.2 cm. I hope this is correct! :)
Answer:
I think it's maybe $55.00
Step-by-step explanation:
25 = hypothenuse
14 = opposite
Use SOHCAHTOA
Give O and H, you can use sin
Sin^-1 = 14/25 = 34.0557
Round to hundreds
Solution: 34.06
Answer:
1. 625,000 J
2. 100 J
4. 5 kg
5. √5 ≈ 2.236 m/s
Step-by-step explanation:
You should be aware that the SI derived units of Joules are equivalent to kg·m²/s².
To reduce confusion between <em>m</em> for mass and m for meters, we'll use an <em>italic m</em> for mass.
In each case, the "find" variable is what's left after we put the numbers into the formula. It is what the question is asking for. The "given" values are the ones in the problem statement and are the values we put into the formula. The formula is the same in every case.
__
1. KE = (1/2)<em>m</em>v² = (1/2)(2000 kg)(25 m/s)² = 625,000 kg·m²/s² = 625,000 J
__
2. KE = (1/2)<em>m</em>v² = (1/2)(0.5 kg)(20 m/s)² = 100 kg·m²/s² = 100 J
__
4. KE = (1/2)<em>m</em>v²
250 J = (1/2)<em>m</em>(10 m/s)² = 50 m²/s²
(250 kg·m²/s²)/(50 m²/s²) = <em>m</em> = 5 kg
__
5. KE = (1/2)<em>m</em>v²
2000 kg·m²/s² = (1/2)(800 kg)v²
(2000 kg·m²/s²)/(400 kg) = v² = 5 m²/s²
v = √5 m/s ≈ 2.236 m/s