Volume of a sphere = (4/3)πr³ π ≈ 3.14, r = 9
Volume, V = (4/3)πr³
V ≈ (4/3)*3.14*9³
V ≈ (4/3)*3.14*9*9*9 Use calculator
V ≈ 3052.08
Option A.
Hope this helps.
In three dimensions, the cross product of two vectors is defined as shown below

Then, solving the determinant

In our case,

Where we used the formula for AxB to calculate ixj.
Finally,

Thus, (i+j)x(ixj)=i-j
Answer:
x = 6
Option A.
Step-by-step explanation:
We know that
If A, B and C are collineal points, they all pass through a common line.
<--------------14-------------->
A-----------B----------------C
<-----x-----><------x+2---->
Based on the problem and the diagram above,
(x) + (x+2) = 14
(2x+2) = 14
(2x) = 12
(x) = 6
The functions shows in the data table is an exponential function.
Answer:

Step-by-step explanation:
Using the addition formulae for cosine
cos(x ± y) = cosxcosy ∓ sinxsiny
---------------------------------------------------------------
cos(120 + x) = cos120cosx - sin120sinx
= - cos60cosx - sin60sinx
= -
cosx -
sinx
squaring to obtain cos² (120 + x)
=
cos²x +
sinxcosx +
sin²x
--------------------------------------------------------------------
cos(120 - x) = cos120cosx + sin120sinx
= -cos60cosx + sin60sinx
= -
cosx +
sinx
squaring to obtain cos²(120 - x)
=
cos²x -
sinxcosx +
sin²x
--------------------------------------------------------------------------
Putting it all together
cos²x +
cos²x +
sinxcosx +
sin²x +
cos²x -
sinxcosx +
sin²x
= cos²x +
cos²x +
sin²x
=
cos²x +
sin²x
=
(cos²x + sin²x) = 