Answer:
Max height: 64 feet, and the socond one was higher.
Step-by-step explanation:
The max height is the y value of the vertex, because that’s when the graph peaks.
we can already very clearly see the vertex on the graph, so we don’t need to calculate it.
the max height of the second golf ball is 64 feet.
Now let’s look at the max height on the first golf ball.
we get the equation
h=-16t squared + 48t
to find the vertex of this, we can use the formula -b/2a
-48/-32 = 1.5
1.5 is the t value of this vertex.
to find the h value, we plug it in.
h = -16 (1.5) squared + 48(1.5)
h =2.25 times -16 + 72
h = -36 +72
h = 36
the first one is 36 max height, and the second is 64. The second one is bigger.
Answer:
Part 1) 
Part 2) 
Part 3) 
Step-by-step explanation:
Part 1) Find the measure of angle ECF
we know that
CF is tangent at point C
so
the radius EC is perpendicular to the tangent CF
therefore

Part 2) Find the measure of angle AKB
we know that
The measure of the interior angle is the semi-sum of the arcs comprising it and its opposite

substitute the values

Part 3) Find the measure of angle ACF
we know that
The inscribed angle is half that of the arc it comprises

substitute the values

Answer: (x^2)/16 + (y^2)/25 = 1
Step-by-step explanation:
According to the problem we can figure out that the center of the ellipse is (0,0).
Since the foci is (0,3) and (0,-3) we know that the value of c is 3. The major vertices are (0,5) and (0,-5) so the value of a is 5.
If we put this into the equation a^2=b^2 + c^2, we get 25=9+ b^2
We get b^2 is 16
Now since we know that the ellipse is vertical because the x value didn’t change, we know that the b^2 value comes first in the equation. Then the a^2 value which is 25.
Answer:
7hours
Step-by-step explanation:
42hours/6=7hours