V = L * W * H
V = 1/4 * 2/3 * 3/5
V = (1 * 2 * 3) / (4 * 3 * 5)
V = 6/60 reduces to 1/10 m^3 <==
answer:
2,558
step-by-step explanation:
the formula for the volume of a cone is v=πr²h/3
with that let us 'fill in' the formula-
v=π*9.6²*26.5/3
v=2,557.51
then since you've asked us to round the answer to the nearest whole number that would be 2,558
good luck :)
i hope this helps
brainliest would be highly appreciated
have a nice day!
We are given a concave spherical mirror with the following dimensions:
Radius = 60 cm; D o = 30 cm
Height = 6 cm; h o = 6 cm
First, we need to know the focal length, f, of the object (this should be given). Then we can use the following formulas for calculation:
Assume f = 10 cm
1/ f = 1 /d o + 1 / d i
1 / 10 = 1 / 30 + 1 / d i
d i = 15 cm
Then, calculate for h i:
h i / h o = - d i / d o
h i / 6 = - 15 / 30
h i = - 3 cm
Therefore, the distance of the object from the mirror is 3 centimeters. The negative sign means it is "inverted".
The model that represents 0.30+0.03 is A.
A system is inconsistent when there are no solutions between the two equations. Graphically, the lines will be parallel (they never meet!) and the slopes will be the same. But the y-intercepts will be different.
Let's look at the four equations, with each solved as needed, into y = mx + b form.
A: 2x + y = 5
y = 5 - 2x
y = -2x + 5
Compared to y = 2x + 5, the slopes are different, so this system won't be inconsistent. Not a good choice.
B: y = 2x + 5
Compared to y = 2x + 5, the slopes are the same and the y intercepts are the same. This system has infinitely many solutions. Not a good choice.
C: 2x - 4y = 10
-4y = 10 - 2x
-4y = -2x + 10
y = 2/4x -10/4
Here the slopes are different, so, like A this is not a good choice.
D: 2y - 4x = -10
2y = =10 + 4x
2y = 4x - 10
y = 2x - 5
Compared to y = 2x + 5 we have the same slopes and different y intercepts. The lines will be parallel and the system is inconsistent.
Thus, D is the best choice.