For this case we have the following subtraction:
![12-7](https://tex.z-dn.net/?f=%2012-7%20%20)
We can rewrite the subtraction in an easier way.
We have then:
![12-7 = 12 - (5 + 2)](https://tex.z-dn.net/?f=%2012-7%20%3D%2012%20-%20%285%20%2B%202%29%20%20)
Then, by doing associative property we have:
![12 - (5 + 2) = (12-2) - 5\\(12-2) - 5 = 10 - 5\\10 - 5 = 5](https://tex.z-dn.net/?f=%2012%20-%20%285%20%2B%202%29%20%3D%20%2812-2%29%20-%205%5C%5C%2812-2%29%20-%205%20%3D%2010%20-%205%5C%5C10%20-%205%20%3D%205%20%20)
Answer:
The value of the subtraction is given by:
![12-7 = 5](https://tex.z-dn.net/?f=%2012-7%20%3D%205%20)
Answer:
plzz show me the diagram otherwise I can't help you sorry!!!!
Given:
Circle C and circle R are similar.
The length of arc AB is ![s = \frac{22 \pi}{9}](https://tex.z-dn.net/?f=s%20%3D%20%5Cfrac%7B22%20%5Cpi%7D%7B9%7D)
The radius of circle C (AC) = 4 unit
The radius of circle R (QR) =6 unit
To find the length of arc QP.
Formula
The relation between s, r and
is
![arclength = 2\pi r \frac{\theta}{360}](https://tex.z-dn.net/?f=arclength%20%3D%202%5Cpi%20r%20%5Cfrac%7B%5Ctheta%7D%7B360%7D)
where,
s be the length of the arc
r be the radius
be the angle.
Now,
For circle C
Taking r = 4
According to the problem,
![2 \pi r \frac{\theta}{360} = \frac{22 \pi}{9}](https://tex.z-dn.net/?f=2%20%5Cpi%20r%20%5Cfrac%7B%5Ctheta%7D%7B360%7D%20%3D%20%5Cfrac%7B22%20%5Cpi%7D%7B9%7D)
or,
[ eliminating
from both side]
or, ![\theta = \frac{(22)(360)}{(9)(2)(4)}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%5Cfrac%7B%2822%29%28360%29%7D%7B%289%29%282%29%284%29%7D)
or, ![\theta = 110^\circ](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20110%5E%5Ccirc)
Again,
For circle R
Taking, r = 6 and
we get,
The length of arc QP is
![arc length = 2\pi (6)(\frac{110}{360} )](https://tex.z-dn.net/?f=arc%20length%20%3D%202%5Cpi%20%286%29%28%5Cfrac%7B110%7D%7B360%7D%20%29)
or, ![arclength = \frac{11 \pi}{3}](https://tex.z-dn.net/?f=arclength%20%3D%20%5Cfrac%7B11%20%5Cpi%7D%7B3%7D)
Hence,
The length of QP is
. Option C.
9514 1404 393
Answer:
-2/3
Step-by-step explanation:
The slope formula is useful for this.
m = (y2 -y1)/(x2 -x1)
m = (2 -(-6))/(-9 -3) = 8/-12
m = -2/3
The slope of the line is -2/3.
__
The graph shows the two points and a line with a slope of -2/3.