Answer:
QH = 227.8 km ≅ 228 km
Step-by-step explanation:
∵ The bearing from H to P is 084°
∵ The bearing from P to Q is 210°
∵ The distance from H to P = 340 km
∵ The distance from P to Q = 160 km
∴ The angle between 340 and 160 = 360 - 210 - (180 - 84) = 54°
( 180 - 84) ⇒ interior supplementary
By using cos Rule:
(QH)² = (PH)² + (PQ)² - 2(PH)(PQ)cos∠HPQ
(QH)² = 340² + 160² - 2(340)(160)cos(54) = 51904.965
∴ QH = 227.8 km ≅ 228 km
Answer:
the first one
Step-by-step explanation:
A graph showing the Earliest Start Times (EST) for project tasks is computed left to right based on the predecessor task durations. For dependent tasks, the earliest start time will be the latest of the finish times of predecessor tasks.
The first graph appears to appropriately represent the table values, using edges to represent task duration, and bubble numbers to represent start times.
The second graph does not appropriately account for duration of predecessor tasks.
The third graph seems to incorrectly compute task completion times (even if you assume that the edge/bubble number swap is acceptable).
Here is something that can help you
First of all you are going to want to google the way to solve that area of a triangle. Solve the triangles area. then find the area of the rectangle and add all of your answers to get the over all area.