Answer: These are some points of the grahp:
(-2,4)
(0, 3)
(2, 2)
Explanation:
1) f(x) = -0.5x + 3, is the equation of the form y = mx + b
2) y = mx + b is slope-intercept equation of a line where the slope is m and the y-intercept is b, so, f(x) = - 0.5x + b has slope m = -0.5 and y-intercept b = 3.
3) To graph f(x) = -0.5x + 3, follow these steps:
- draw two perpedicular axis: vertical axis, labeled y, and horizontal axis, labeled x.
- draw marks on each axis, each mark equivalent to one unit.
- the intersection point of the vertical and horizontal axis is the origin, i.e. point (0,0).
- you can make a table with two or more points:
x f(x) = - 0.5x + 3
-2 4
0 3
2 2
4 1
6 0
4) You can see the graph in the figure attached, and select any of the points on the line either by using the table or by using the equation f(x) = -0.5x + 3.
Divide 3 1/2 by 7= 1/2 a cup per person
Hey mate l think it is
<span>23.040 cubic units </span>
Answer:
69.14% probability that the diameter of a selected bearing is greater than 84 millimeters
Step-by-step explanation:
According to the Question,
Given That, The diameters of ball bearings are distributed normally. The mean diameter is 87 millimeters and the standard deviation is 6 millimeters. Find the probability that the diameter of a selected bearing is greater than 84 millimeters.
- In a set with mean and standard deviation, the Z score of a measure X is given by Z = (X-μ)/σ
we have μ=87 , σ=6 & X=84
- Find the probability that the diameter of a selected bearing is greater than 84 millimeters
This is 1 subtracted by the p-value of Z when X = 84.
So, Z = (84-87)/6
Z = -3/6
Z = -0.5 has a p-value of 0.30854.
⇒1 - 0.30854 = 0.69146
- 0.69146 = 69.14% probability that the diameter of a selected bearing is greater than 84 millimeters.
Note- (The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X)
I think that the answer is c