Answer:
A) exothermic, δh is negative
B) endothermic, δh is positive
C) endothermic, δh is positive
Explanation:
And endothermic process absorbs heat from its sorrounding, cooling the sorrounding down. Whereas an exothermic process releases heat to its sorrounding raising the temperature of the sorrounding system.
The required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ
First, we must understand that the component of the velocity along the vertical is due to maximum height achieved and expressed as usin
θ.
The component of the velocity along the horizontal is due to the range of the object and is expressed as ucosθ.
If the <u>air resistance is ignored</u>, the velocity of the object will be constant throughout the flight and the initial velocity will be equal to the final velocity.
Hence the required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ
Learn more here; brainly.com/question/12870645
The acceleration that the same force will provide if both masses are tied together is; 6.0 m/s².
<h3>How to find the Acceleration?</h3>
We are given;
Force; F = 5 N
Acceleration of the first mass, a₁ = 8.0 m/s²
Acceleration of the second mass, a₂ = 24 m/s²
Formula for force is;
F = ma
Let us find both masses; m₁ and m₂.
m₁ = F/a₁
m₂ = F/a₂
Thus;
m₁ = 5/8 kg
m₂ = 5/24 kg
Total mass is; m = m₁ + m₂
m = 5/8 + 5/24
m = 15 + 5/24
m = 20/24 kg
Thus, acceleration if they are both tied together is;
a = F/m
a = 5/(20/24)
a = 6.0 m/s².
Read more about Acceleration at; brainly.com/question/605631
#SPJ1
Answer:
James is correct here as the force of hand pushing upwards is always more than the force of hand pushing down
Explanation:
Here we know that one hand is pushing up at some distance midway while other hand is balancing the weight by applying a force downwards
so here we can say
Upwards force = downwards Force + weight of snow
while if we find the other force which is acting downwards
then for that force we can say that net torque must be balanced
so here we have

so here we have

so here we can say that upward force by which we push up is always more than the downwards force
Answer:
13.33 seconds
Explanation:
I = Q/t
t = Q/I = 4/0.3 = 13.33 seconds