Answer:
A₁/A₂ = 0.44
Explanation:
The emissive power of the bulb is given by the formula:
P = σεAT⁴
where,
P = Emissive Power
σ = Stefan-Boltzman constant
ε = Emissivity
A = Surface Area
T = Absolute Temperature of Surface
<u>FOR BULB 1:</u>
Since, emissivity and emissive power are constant.
Therefore,
P = σεA₁T₁⁴ ----------- equation 1
where,
A₁ = Surface Area of Bulb 1
T₁ = Temperature of Bulb 1 = 3000 k
<u>FOR BULB 2:</u>
Since, emissivity and emissive power are constant.
Therefore,
P = σεA₂T₂⁴ ----------- equation 2
where,
A₂ = Surface Area of Bulb 2
T₂ = Temperature of Bulb 1 = 2000 k
Dividing equation 1 by equation 2, we get:
P/P = σεA₁T₁⁴/σεA₂T₂⁴
1 = A₁(3000)²/A₂(2000)²
A₁/A₂ = (2000)²/(3000)²
<u>A₁/A₂ = 0.44</u>
Answer:
How long does the ball fall is t_2 = 13.66 (s).
From what height is the ball originally dropped is h= 913.90 (m).
Explanation:
Explanation:
<em>Light</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>form</em><em> </em><em>of</em><em> </em><em>energy</em><em> </em><em>that</em><em> </em><em>travels</em><em> </em><em>as</em><em> </em><em>waves</em><em>.</em>
The greatest amount of kinetic energy is found with the train because it takes most energy to reach that velocity and also to slow down to a halt.