The whistling sound from the hearing aids represents that your hearing aids is working perfectly ad is known as the "feedback". So, the given statement is true.
Answer: Option A
<u>Explanation:</u>
It's often sounds irritating when a hearing aids of your grandpa or Grandma whistles. especially, when they put them out of their ears. Actually, this feedback sound from hearing aids occur when the sounds from the outer side bounces back to the microphone of the hearing aids.
The sound bounces back when it doesn't gets inside of your ear canal so that one can hear the sound through the hearing aid. When the sounds bounces back in the hearing aid, it get re-amplified and thus we hear the whistle sound which is known as the feedback of the device.
It's not always the feedback sound though. Sometimes the device whistles when it has some mechanical defect or when one hugs the other one or water gets inside and damaged the whole system.
The answer is: (2) : <span>↘
___________________________________</span>
You are who you are because of your enviorment. It depends if your in a healthy environment or a toxic one which changes your act. (Hope this helps)
Answer:
Figure E is the correct representation of the first part of the motion. When in a hanging position from the chin-up bar, the bicep muscles are stretched beyond their normal length already. So at this point they are at the peak of their capacity and you are at rest (this corresponds to the velocity v = 0 at t = 0). On contracting the bicep muscles and pulling your whole body up, you begin to gain speed and v increases. This increase in velocity is exponential. Soon the bicep muscles contract up to 80% their normal length reducing the force they can produce to keep you rising up to zero. The velocity change happens because the body is accelerating and the muscles can still supply a net force to lift you up. The acceleration is present because of this net force. The moment this force reduces to zero, the acceleration too reduces to zero. (From Newton's second law of motion). This reduction in acceleration is responsible for the reduction of the curvature of the v curve in figure E above. The point where the velocity becomes horizontal corresponds to the point where the muscles reach their maximum contraction unit and can supply no more net force and as a result no acceleration. This further results inba constant velocity which is the flat nature of the curve seen in diagram E.
Thank you for reading.
Explanation:
The correct answer is B the total velocity is equal at both landing and launch because before your about launch you have 0 velocity then when you have landed you also have 0 velocity. Hope This Helps