Answer: D. an angle is in standard position if the vertex is at the origin of a rectangular coordinate system and the initial side lies along the positive x-axis.
Answer:
![A = \left[\begin{array}{ccc}1&-4&2\\2&6&-6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-4%262%5C%5C2%266%26-6%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given




Required
Find the standard matrix
The standard matrix (A) is given by

Where
![T(x) = [T(e_1)\ T(e_2)\ T(e_3)]\left[\begin{array}{c}x_1&x_2&x_3\\-&&x_n\end{array}\right]](https://tex.z-dn.net/?f=T%28x%29%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%26x_2%26x_3%5C%5C-%26%26x_n%5Cend%7Barray%7D%5Cright%5D)
becomes
![Ax = [T(e_1)\ T(e_2)\ T(e_3)]\left[\begin{array}{c}x_1&x_2&x_3\\-&&x_n\end{array}\right]](https://tex.z-dn.net/?f=Ax%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%26x_2%26x_3%5C%5C-%26%26x_n%5Cend%7Barray%7D%5Cright%5D)
The x on both sides cancel out; and, we're left with:
![A = [T(e_1)\ T(e_2)\ T(e_3)]](https://tex.z-dn.net/?f=A%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D)
Recall that:



In matrix:
is represented as: ![\left[\begin{array}{c}a\\b\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Da%5C%5Cb%5Cend%7Barray%7D%5Cright%5D)
So:
![T(e_1) = (1,2) = \left[\begin{array}{c}1\\2\end{array}\right]](https://tex.z-dn.net/?f=T%28e_1%29%20%3D%20%281%2C2%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
![T(e_2) = (-4,6)=\left[\begin{array}{c}-4\\6\end{array}\right]](https://tex.z-dn.net/?f=T%28e_2%29%20%3D%20%28-4%2C6%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-4%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
![T(e_3) = (2,-6)=\left[\begin{array}{c}2\\-6\end{array}\right]](https://tex.z-dn.net/?f=T%28e_3%29%20%3D%20%282%2C-6%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C-6%5Cend%7Barray%7D%5Cright%5D)
Substitute the above expressions in ![A = [T(e_1)\ T(e_2)\ T(e_3)]](https://tex.z-dn.net/?f=A%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D)
![A = \left[\begin{array}{ccc}1&-4&2\\2&6&-6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-4%262%5C%5C2%266%26-6%5Cend%7Barray%7D%5Cright%5D)
Hence, the standard of the matrix A is:
![A = \left[\begin{array}{ccc}1&-4&2\\2&6&-6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-4%262%5C%5C2%266%26-6%5Cend%7Barray%7D%5Cright%5D)
Answer:
C. $97
Step-by-step explanation:
The average of his wage for all 15 days is the sum of all wages for the 15 days divided by 15.
average wage for 15 days = (sum of wages for the 15 days)/15
The amount of wages during a number of days is the product of the average wage of those days and the number of days.
First 7 days:
average wage: $87
number of days: 7
total wages in first 7 days = 7 * $87/day = $609
Last 7 days:
average wage: $92
number of days: 7
total wages in last 7 days = 7 * $92/day = $644
8th day:
wages of the 8th day is unknown, so we let x = wages of the 8th day
total wages of 15 days = (wages of first 7 days) + (wages of 8th day) + (wages of last 7 days)
total wages of 15 days = 609 + x + 644 = x + 1253
average wage for 15 days = (sum of wages for the 15 days)/15
average wage for 15 days = (x + 1253)/15
We are told the average for the 15 days is $90/day.
(x + 1253)/15 = 90
Multiply both sides by 15.
x + 1253 = 1350
Subtract 1253 from both sides.
x = 97
Answer: $97