Answer:
The system of inequalities are
x - y < 1 and y < - 2
Step-by-step explanation:
The horizontal line shown in the graph has equation y = - 2 {As it is parallel to x-axis}
Now, this line is dotted and the lower portion of the graph is shaded.
So, the inequality will be y < - 2 ......... (1)
Again, another line is there in the graph which passes through the points (1,0) and (0,-1)
So, its equation will be 
⇒ y + 1 = x
⇒ x - y = 1
Now, the origin (0,0) is within shaded zone of the inequality and putting x = 0 and y = 0, we get
0 - 0 < 1
So, the equation of the inequality is x - y < 1 {As the line is dotted}
Therefore, the system of inequalities are
x - y < 1 and y < - 2 (Answer)
Answer:
B.) Line ED Corespondes to line AD
Step-by-step explanation:
5(3*10+8)=190
8*10+8=88
they are not equivalent , not equal
<em>Answer:</em>
<em />
<em>Step-by-step explanation:Let us find points of intersection of line </em>
<em>3
</em>
<em>x
</em>
<em>+
</em>
<em>4
</em>
<em>y
</em>
<em>−
</em>
<em>k
</em>
<em>=
</em>
<em>0
</em>
<em> and circle </em>
<em>x
</em>
<em>2
</em>
<em>+
</em>
<em>y
</em>
<em>2
</em>
<em>=
</em>
<em>16
</em>
<em>. We can do this by putting value of </em>
<em>y
</em>
<em> from first equation i.e. </em>
<em>y
</em>
<em>=
</em>
<em>k
</em>
<em>−
</em>
<em>3
</em>
<em>x
</em>
<em>4
</em>
<em> and we get
</em>
<em>
</em>
<em>x
</em>
<em>2
</em>
<em>+
</em>
<em>(
</em>
<em>k
</em>
<em>−
</em>
<em>3
</em>
<em>x
</em>
<em>)
</em>
<em>2
</em>
<em>16
</em>
<em>=
</em>
<em>16
</em>
<em>
</em>
<em>or </em>
<em>16
</em>
<em>x
</em>
<em>2
</em>
<em>+
</em>
<em>k
</em>
<em>2
</em>
<em>+
</em>
<em>9
</em>
<em>x
</em>
<em>2
</em>
<em>−
</em>
<em>6
</em>
<em>k
</em>
<em>x
</em>
<em>=
</em>
<em>256
</em>
<em>
</em>
<em>i.e. </em>
<em>25
</em>
<em>x
</em>
<em>2
</em>
<em>−
</em>
<em>6
</em>
<em>k
</em>
<em>x
</em>
<em>+
</em>
<em>k
</em>
<em>2
</em>
<em>−
</em>
<em>256
</em>
<em>=
</em>
<em>0
</em>
<em>
</em>
<em>This would give two values of </em>
<em>x
</em>
<em> and corresponding two values of </em>
<em>y
</em>
<em> i.e. two points. But tangent cuts the circle in only at one point. This will be so when discriminant is zero i.e.
</em>
<em>
</em>
<em>(
</em>
<em>−
</em>
<em>6
</em>
<em>k
</em>
<em>)
</em>
<em>2
</em>
<em>−
</em>
<em>4
</em>
<em>⋅
</em>
<em>25
</em>
<em>⋅
</em>
<em>(
</em>
<em>k
</em>
<em>2
</em>
<em>−
</em>
<em>256
</em>
<em>)
</em>
<em>=
</em>
<em>0
</em>
<em>
</em>
<em>or </em>
<em>−
</em>
<em>64
</em>
<em>k
</em>
<em>2
</em>
<em>+
</em>
<em>25600
</em>
<em>=
</em>
<em>0
</em>
<em> or </em>
<em>k
</em>
<em>=
</em>
<em>±
</em>
<em>20
</em>
<em>
</em>
<em>graph{(x^2+y^2-16)(3x+4y-20)(3x+4y+20)=0 [-10, 10, -5, 5]}</em>