Answer:
-36
Step-by-step explanation:
Answer:
$9,220,000(0.888)^t
Step-by-step explanation:
Model this using the following formula:
Value = (Present Value)*(1 - rate of decay)^(number of years)
Here, Value after t years = $9,220,000(1 -0.112)^t
Value after t years = $9,220,000(0.888)^t
Answer:
La persona está a 5 kilómetros con respecto al punto de partida.
Step-by-step explanation:
Considérese que la dirección norte coincide con el semieje +y y que la dirección este coincide con el semieje +x. A continuación, obtenemos las formas vectoriales equivalentes de cada afirmación:
(i) Una persona camina 7 kilómetros hacia el norte:
![\vec r_{1} = 7\,\hat{j}\,[km]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B1%7D%20%3D%207%5C%2C%5Chat%7Bj%7D%5C%2C%5Bkm%5D)
(ii) Después 3 kilómetros hacia el este:
![\vec r_{2} = 3\,\hat{i}\,[km]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B2%7D%20%3D%203%5C%2C%5Chat%7Bi%7D%5C%2C%5Bkm%5D)
(iii) Y luego, 3 kilómetros hacia el sur:
![\vec r_{3} = -3\,\hat{j}\,[km]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B3%7D%20%3D%20-3%5C%2C%5Chat%7Bj%7D%5C%2C%5Bkm%5D)
El vector resultante de desplazamiento se construye a partir de la siguiente suma de vectores:
(1)
![\vec R = 3\,\hat{i} + 4\,\hat{j}\,[km]](https://tex.z-dn.net/?f=%5Cvec%20R%20%3D%203%5C%2C%5Chat%7Bi%7D%20%2B%204%5C%2C%5Chat%7Bj%7D%5C%2C%5Bkm%5D)
Asumiendo que la distancia coincide con el desplazamiento resultante, calculamos la distancia con respecto al punto de partida mediante el Teorema de Pitágoras:


La persona está a 5 kilómetros con respecto al punto de partida.
ANSWER : (9u - 8)2
STEPS:
Step-1 : Multiply the coefficient of the first term by the constant 81 • 64 = 5184
Step-2 : Find two factors of 5184 whose sum equals the coefficient of the middle term, which is -144 .
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -72 and -72
81u2 - 72u - 72u - 64
Step-4 : Add up the first 2 terms, pulling out like factors :
9u • (9u-8)
Step-5 : Add up the four terms of step 4 :
(9u-8) • (9u-8)
Which is the desired factorization