Answer:
B and C
Step-by-step explanation:
Minimum and Maximum points occur when the gradient of the function is equal to 0. Graphically this looks like a bend such that the function dips from decreasing to increasing (the gradient goes form being negative to positive) and vice versa.
A minimum point occurs where all the nearby values are higher than that of the point in question.
A maximum point occurs where all the nearby points are lower than the point in question.
By looking at the graph, there is a maximum point around (4.5, 1.5) which is consistent with B but not A (since A talks about a minimum point)
By looking at the graph, there is a minimum point around (0.5, 1.5) which is consistent with C.
I've highlighted areas of interest below so hopefully that's helpful :>
We are given a graph of a quadratic function y = f(x) .
We need to find the solution set of the given graph of a quadratic function .
<em>Note: Solution of a function the values of x-coordinates, where graph cut the x-axis.</em>
For the shown graph, we can see that parabola in the graph doesn't cut the x-axis at any point.
It cuts only y-axis.
Because solution of a graph is only the values of x-coordinates, where graph cut the x-axis. Therefore, there would not by any solution of the quadratic function y = f(x).
<h3>So, the correct option is 2nd option :∅.</h3>
Comeonshakeyourbodydothatcongaknowyoucantcontrolyourselfanylonger