Split the second term in 3a^2 - 8a + 4 into two terms
3a^2 - 2a - 6a + 4 = 0
Factor out common terms in the first two terms, then in the last two terms.
a(3a - 2) -2(3a - 2) = 0
Factor out the common term 3a - 2
(3a - 2)(a - 2) = 0
Solve for a;
a = 2/3,2
<u>Answer : B. (2/3,2)</u>
Answer:
32
Step-by-step explanation:
let number=b
twice a number=2b
Condition:
2b+13=75
2b=75-13
2b=62
b=62/2
b=31
<u>N</u><u>o</u><u>t</u><u>e</u><u>:</u><u>i</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>n</u><u>e</u><u>e</u><u>d</u><u> </u><u>t</u><u>o</u><u> </u><u>a</u><u>s</u><u>k</u><u> </u><u>a</u><u>n</u><u>y</u><u> </u><u>question</u><u> </u><u>please</u><u> </u><u>let</u><u> </u><u>me</u><u> </u><u>know</u><u>.</u>
Answer:
C
Step-by-step explanation:
Answer:
Step-by-step explanation:
Rewrite this quadratic in standard form: 3x^2 + 7x - 1.
The coefficients of x are {3, 7, -1}, and so the discriminant is b^2 - 4ac, or
7^2 - 4(3)(-1), or 49 + 12, or 61. Because the discriminant is positive, this quadratic has two real, unequal roots