Alrighty
squaer base so length=width, nice
v=lwh
but in this case, l=w, so replace l with w
V=w²h
and volume is 32000
32000=w²h
the amount of materials is the surface area
note that there is no top
so
SA=LW+2H(L+W)
L=W so
SA=W²+2H(2W)
SA=W²+4HW
alrighty
we gots
SA=W²+4HW and
32000=W²H
we want to minimize the square foottage
get rid of one of the variables
32000=W²H
solve for H
32000/W²=H
subsitute
SA=W²+4WH
SA=W²+4W(32000/W²)
SA=W²+128000/W
take derivitive to find the minimum
dSA/dW=2W-128000/W²
where does it equal 0?
0=2W-1280000/W²
128000/W²=2W
128000=2W³
64000=W³
40=W
so sub back
32000/W²=H
32000/(40)²=H
32000/(1600)=H
20=H
the box is 20cm height and the width and length are 40cm
Answer:
Victor runs a small sandwich shop. He decides to start offering bags of chips to his customers. He finds a supplier where he can buy chips for $0.30 per bag. Victor needs to determine how much to charge for the chips at his shop. He does some research by talking to other nearby sandwich shop owners. The table below shows their sales per week for two different prices. (The values are: 150 bags sold, for $1.00 per bag, and 350 bags sold, for $0.50 per bag.) Victor believes that there is a linear relationship between the number of bags sold and the price. Victor wants to price the bags of chips so that he will maximize his profits. Determine the price Victor should charge for a bag of chips. Use the equation P(x)=R(x)-C(x), where P(x) represents profit, R(x) represents revenue, and C(x) represents cost. Each is a function of the number of bags of chips sold, x. Round your answer to the nearest nickel.
Step-by-step explanation:
Victor runs a small sandwich shop. He decides to start offering bags of chips to his customers. He finds a supplier where he can buy chips for $0.30 per bag. Victor needs to determine how much to charge for the chips at his shop. He does some research by talking to other nearby sandwich shop owners. The table below shows their sales per week for two different prices. (The values are: 150 bags sold, for $1.00 per bag, and 350 bags sold, for $0.50 per bag.) Victor believes that there is a linear relationship between the number of bags sold and the price. Victor wants to price the bags of chips so that he will maximize his profits. Determine the price Victor should charge for a bag of chips. Use the equation P(x)=R(x)-C(x), where P(x) represents profit, R(x) represents revenue, and C(x) represents cost. Each is a function of the number of bags of chips sold, x. Round your answer to the nearest nickel.
Answer:
120cm^3
Step-by-step explanation:
Answer:
your answer is already wrong so did not help you