Answer:
-1.82 °C
Explanation:
Step 1: Given data
- Mass of NaCl (solute): 33.9 g
- Mass of water (solvent): 578 g = 0.578 kg
- Freezing point depression constant for water (Kb): -1.82 °C/m
Step 2: Calculate the molality of the solution
We will use the following expression.
m = mass of solute / molar mass of solute × kg of solvent
m = 33.9 g / 58.44 g/mol × 0.578 kg
m = 1.00 m
Step 3: Calculate the freezing point depression (ΔT)
The freezing point depression is a colligative property that, for a non-dissociated solute, can be calculated using the following expression:
ΔT = Kb × m
ΔT = -1.82 °C/m × 1.00 m
ΔT = -1.82 °C
Answer:
3,8×10⁻⁵ mol/L of potassium permanganate solution
Explanation:
To calculate concentration in mol/L you must convert the 3,8 umol to moles and 100 mL to liters, knowing 1 umol are 1×10⁻⁶mol and 1L are 1000 mL.
3,8 umol × (1×10⁻⁶mol / 1 umol ) = 3,8×10⁻⁶mol of potassium permanganate.
100 mL × ( 1L / 1000 mL) = 0,100 L
Thus, concentration in mol/L is:
3,8×10⁻⁶mol / 0,100 L = 3,8×10⁻⁵ mol/L of potassium permanganate solution
I hope it helps!
Answer:
a. Remaining at rest requires the use of ATP.
Explanation:
The resting membrane potential is maintained by the sodium-potassium pump. The sodium potassium pump does this by actively pumping sodium ions out of the cell and potassium ions inside the cell in a ratio of 3:2. This movement of ions by the sodium-potassium pump is against their concentration gradient. In a neuron at rest, there are more sodium ions outside the cell than there are inside the cell. Also, there are are more potassium ions inside the cell than there are outside the cell. However, there are ion channels through which these ions enter and leave the cell. Sodium ion channels allow sodium to enter the cell following its concentration gradient, whereas, potassium ion channels allow potassium to leave the cell following its concentration gradient. However, more potassium ions leave the cell than do sodium ions enter the cell because of the higher permeability of the cell to potassium ions.
In order to maintain the resting membrane potential, the sodium potassium pump powered by the hydrolysis of an ATP molecules pumps sodium ions out of the cell and potassium ions into the cell.
<em>Therefore, the correct option is A, as ATP is needed by the sodium-potassium pump in order to maintain the resting membrane potential.</em>
The particles of the rings are mostly made of water and ice, so the answer is C. Ice.
I hope this helped :)