All you have to do is addition. 2+5+4=11. Or you can break it down and go 2+5=7 and then 7+4=11. Or 5+4=9 then 9+2=11. Or 4+2=6 then 6+5=11.
Answer:
(c) III
Step-by-step explanation:
If you simplify the equations and the left side is identical to the right side, then there are an infinite number of solutions: the equation is true for all values of x.
Another way to simplify the equation is to subtract the right side from both sides. If that simplifies to 0 = 0, then there are an infinite number of solutions.
__
<h3>I. </h3>
2x -6 -6x = 2 -4x . . . . eliminate parentheses
-4x -6 = -4x +2 . . . . no solutions (no value of x makes this true)
__
<h3>II.</h3>
x +2 = 15x +10 +2x . . . . eliminate parentheses
x +2 = 17x +10 . . . . one solution (x=-1/2)
__
<h3>III.</h3>
4 +6x = 6x +4 . . . . eliminate parentheses
6x +4 = 6x +4 . . . . infinite solutions
__
<h3>IV.</h3>
6x +24 = 2x -4 . . . . eliminate parentheses; one solution (x=-7)
Answer:

Step-by-step explanation:
Given
--- interval
Required
The probability density of the volume of the cube
The volume of a cube is:

For a uniform distribution, we have:

and

implies that:

So, we have:

Solve


Recall that:

Make x the subject

So, the cumulative density is:

becomes

The CDF is:

Integrate
![F(x) = [v]\limits^{v^\frac{1}{3}}_9](https://tex.z-dn.net/?f=F%28x%29%20%3D%20%5Bv%5D%5Climits%5E%7Bv%5E%5Cfrac%7B1%7D%7B3%7D%7D_9)
Expand

The density function of the volume F(v) is:

Differentiate F(x) to give:




So:

17=5k-2
add 2 to both sides
19=5k
divide both sides by 5
19/5=k
19/5=3 and 4/5
Answer:
The second answer
XYZ-RQS
Step-by-step explanation: